Advanced Machine-Learning Methods for Brain-Computer Interfacing

The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58%, which is an increase of 6.96% compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm.