State reconstruction of nonlinear differential-algebraic systems with unknown inputs

A state and unknown input estimation is carried out for a class of non linear systems with unknown inputs whose dynamics is governed by differential-algebraic equations (DAE). We propose to replace the original DAE for a system with only differential equations by using a zeroing manifold algorithm inducing a state space dimension reduction. Nevertheless, the observability conditions may be checked in terms of the original system. Finally, the state estimation is carried out by using a sliding mode high order differentiator.

[1]  Erik Frisk,et al.  An observer for non-linear differential-algebraic systems , 2006, Autom..

[2]  S. Campbell Singular systems of differential equations II , 1980 .

[3]  Wilfrid Perruquetti,et al.  A Global High-Gain Finite-Time Observer , 2010, IEEE Transactions on Automatic Control.

[4]  S. Campbell Singular Systems of Differential Equations , 1980 .

[5]  Mohamed Darouach,et al.  Observers for a Class of Nonlinear Singular Systems , 2008, IEEE Transactions on Automatic Control.

[6]  Alexander S. Poznyak,et al.  Unknown Input and State Estimation for Unobservable Systems , 2009, SIAM J. Control. Optim..

[7]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[8]  G. Besançon An Overview on Observer Tools for Nonlinear Systems , 2007 .

[9]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[10]  W. Terrell Observability of nonlinear differential algebraic systems , 1997 .

[11]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[12]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[13]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[14]  Mohamed Darouach,et al.  H∞ observers design for a class of nonlinear singular systems , 2011, Autom..

[15]  Daniel W. C. Ho,et al.  Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  T. Floquet *,et al.  On the robust fault detection via a sliding mode disturbance observer , 2004 .

[17]  H. Hammouri,et al.  A High Gain Observer for a Class of Implicit Systems , 2000, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  Eduardo D. Sontag,et al.  I/O equations for nonlinear systems and observation spaces , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[19]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[20]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[21]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[22]  A. Isidori Nonlinear Control Systems , 1985 .

[23]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .