Approximation by Hidden Variable Fractal Functions: A Sequential Approach

[1]  N. Vijender Bernstein Fractal Trigonometric Approximation , 2019 .

[2]  N. Vijender Fractal Perturbation of Shaped Functions: Convergence Independent of Scaling , 2018, Mediterranean Journal of Mathematics.

[3]  N. Vijender BERNSTEIN FRACTAL RATIONAL APPROXIMANTS WITH NO CONDITION ON SCALING VECTORS , 2018, Fractals.

[4]  Vijender Nallapu Positivity and Stability of Rational Cubic Fractal Interpolation Surfaces , 2018 .

[5]  A. Chand,et al.  Bicubic partially blended rational fractal surface for a constrained interpolation problem , 2018 .

[6]  M. Navascués,et al.  Convexity/Concavity and Stability Aspects of Rational Cubic Fractal Interpolation Surfaces , 2017 .

[7]  Md. Nasim Akhtar,et al.  BOX DIMENSIONS OF α-FRACTAL FUNCTIONS , 2016 .

[8]  A. Chand,et al.  A NEW CLASS OF FRACTAL INTERPOLATION SURFACES BASED ON FUNCTIONAL VALUES , 2016 .

[9]  A. Chand,et al.  Approximation using hidden variable fractal interpolation function , 2015 .

[10]  A. K. B. Chand,et al.  Positive blending Hermite rational cubic spline fractal interpolation surfaces , 2015 .

[11]  M. Navascués,et al.  Shape preservation of scientific data through rational fractal splines , 2014 .

[12]  N. Vijender,et al.  Rational iterated function system for positive/monotonic shape preservation , 2014 .

[13]  M. Navascués FRACTAL BASES OF Lp SPACES , 2012 .

[14]  Sorin G. Gal,et al.  Shape-Preserving Approximation by Real and Complex Polynomials , 2008 .

[15]  M. Navascués,et al.  Fundamental Sets of Fractal Functions , 2008 .

[16]  Pantelis Bouboulis,et al.  A general construction of fractal interpolation functions on grids of n , 2007, European Journal of Applied Mathematics.

[17]  A. Chand,et al.  CUBIC SPLINE COALESCENCE FRACTAL INTERPOLATION THROUGH MOMENTS , 2007 .

[18]  Pantelis Bouboulis,et al.  Closed fractal interpolation surfaces , 2007 .

[19]  M. A. Navascués,et al.  Smooth fractal interpolation , 2006 .

[20]  Vasileios Drakopoulos,et al.  Image Compression Using Recurrent bivariate Fractal Interpolation Surfaces , 2006, Int. J. Bifurc. Chaos.

[21]  Robert Malysz,et al.  The Minkowski dimension of the bivariate fractal interpolation surfaces , 2006 .

[22]  A. K. B. Chand,et al.  Generalized Cubic Spline Fractal Interpolation Functions , 2006, SIAM J. Numer. Anal..

[23]  M. Navascués Fractal Polynomial Interpolation , 2005 .

[24]  A. K. B. Chand,et al.  Hidden Variable Bivariate Fractal Interpolation Surfaces , 2003 .

[25]  Leoni Dalla,et al.  BIVARIATE FRACTAL INTERPOLATION FUNCTIONS ON GRIDS , 2002 .

[26]  Leoni Dalla,et al.  Regular Article: On the Parameter Identification Problem in the Plane and the Polar Fractal Interpolation Functions , 1999 .

[27]  Heping Xie,et al.  The Study on Bivariate Fractal Interpolation Functions and Creation of Fractal Interpolated Surfaces , 1997 .

[28]  Nailiang Zhao,et al.  Construction and application of fractal interpolation surfaces , 1996, The Visual Computer.

[29]  Douglas P. Hardin,et al.  Fractal Interpolation Functions from $R^n$ into $R^m$ and their Projections , 1993 .

[30]  Michael F. Barnsley,et al.  Hidden variable fractal interpolation functions , 1989 .

[31]  Michael F. Barnsley,et al.  Fractal functions and interpolation , 1986 .

[32]  Vijender Nallapu Bernstein fractal approximation and fractal full Müntz theorems , 2019, ETNA - Electronic Transactions on Numerical Analysis.

[33]  M. Navascués Fractal Approximation , 2010 .