The principles and interpretation of annular dark-field Z-contrast imaging

Publisher Summary This chapter describes the way in which an annular dark-field (ADF) image is formed in a scanning transmission electron microscope (STEM). ADF imaging refers to the use of particular detector geometry in STEM. A geometrically large annular detector is placed in the optical far field beyond the specimen. The total intensity detected over the whole detector is recorded and displayed as a function of the position of the illuminating probe. Because the detector only receives a signal when the specimen is present, the vacuum appears dark, hence the name, and the heavier the atom, the higher the intensity of the scattering, which leads to atomic number (Z) contrast in the image. The most important feature of ADF imaging is that it can be described as being incoherent that has many advantages at atomic resolution. The chapter explains the way in which the image data may be used to provide atomic-resolution information about the specimen.

[1]  A. V. Crewe,et al.  A High‐Resolution Scanning Transmission Electron Microscope , 1968 .

[2]  J. M. Cowley Electron diffraction techniques , 1992 .

[3]  Janssen,et al.  Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. , 1992, Physical review letters.

[4]  C. Rossouw,et al.  Imaging elastic strains in high-angle annular dark field scanning transmission electron microscopy , 1993 .

[5]  D. Van Dyck,et al.  A new procedure for wave function restoration in high resolution electron microscopy , 1987 .

[6]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[7]  D. Cockayne,et al.  An approach to quantitative compositional profiling at near-atomic resolution using high-angle annular dark field imaging , 1997 .

[8]  D. S. Sivia,et al.  An introduction to Bayesian model selection , 1993 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  S J Pennycook,et al.  Direct Determination of Grain Boundary Atomic Structure in SrTiO3 , 1994, Science.

[11]  S. Gull,et al.  Image reconstruction from incomplete and noisy data , 1978, Nature.

[12]  David J. Smith,et al.  A systematic analysis of HREM imaging of elemental semiconductors , 1989 .

[13]  J. Rouviere,et al.  Structure determination of planar defects in crystals of germanium and molybdenum by HREM , 1988 .

[14]  J. M. Cowley,et al.  IMAGE CONTRAST IN A TRANSMISSION SCANNING ELECTRON MICROSCOPE , 1969 .

[15]  J. Skilling,et al.  Probabilistic data analysis: an introductory guide , 1998 .

[16]  B. C. McCallum,et al.  Resolution beyond the 'information limit' in transmission electron microscopy , 1995, Nature.

[17]  O. Scherzer The Theoretical Resolution Limit of the Electron Microscope , 1949 .

[18]  A. V. Crewe,et al.  Electron Gun Using a Field Emission Source , 1968 .

[19]  M. Fiddy,et al.  The phase problem , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  O. Scherzer,et al.  Über einige Fehler von Elektronenlinsen , 1936 .

[21]  Stephen J. Pennycook,et al.  Incoherent imaging using dynamically scattered coherent electrons , 1999 .

[22]  Adam I. Amali,et al.  Theory of Lattice Resolution in High-angle Annular Dark-field Images , 1997, Microscopy and Microanalysis.

[23]  E. H. Linfoot,et al.  Spherical aberration and the information content of optical images , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  Stephen J. Pennycook,et al.  High-resolution Z-contrast imaging of crystals , 1991 .

[25]  Sze M. Tan An analysis of the properties of CLEAN and smoothness Stabilized CLEAN – some warnings , 1986 .

[26]  Russell F. Loane,et al.  Thermal vibrations in convergent‐beam electron diffraction , 1991 .

[27]  Russell F. Loane,et al.  Incoherent imaging of zone axis crystals with ADF STEM , 1992 .

[28]  A. Donald,et al.  A study of grain boundary segregation in Cu-Bi alloys using STEM , 1979 .

[29]  John Skilling,et al.  Prior Distributions on Measure Space , 1997 .

[30]  Peter D. Nellist,et al.  Accurate structure determination from image reconstruction in ADF STEM , 1998 .

[31]  A V Crewe REVIEW ARTICLE: The physics of the high-resolution scanning microscope , 1980 .

[32]  W. T. Grandy Maximum entropy in action: Buck, Brian and Macaulay, Vincent A., 1991, 220 pp., Clarendon Press, Oxford, £30 pb, ISBN 0-19-8539630 , 1995 .

[33]  J. Silcox,et al.  Visibility of Single Heavy Atoms on Thin Crystalline Silicon in Simulated Annular Dark-Field STEM Images , 1988 .

[34]  J. Rodenburg,et al.  The theory of super-resolution electron microscopy via Wigner-distribution deconvolution , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[35]  Adam I. Amali,et al.  High angle annular dark field imaging of stacking faults , 1997 .

[36]  H. Bethe Theorie der Beugung von Elektronen an Kristallen , 1928 .

[37]  P. Nellist,et al.  Subangstrom Resolution by Underfocused Incoherent Transmission Electron Microscopy , 1998 .

[38]  H. Rose,et al.  Simulation of TEM images considering phonon and electronic excitations , 1995 .

[39]  R. Wade,et al.  Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread , 1977 .

[40]  M. Treacy,et al.  Z contrast of platinum and palladium catalysts , 1978 .

[41]  N. Browning,et al.  Atomic‐resolution electron energy‐loss spectroscopy in the scanning transmission electron microscope , 1995 .

[42]  M. Treacy,et al.  Coherence and multiple scattering in “Z-contrast” images , 1993 .

[43]  D. Gabor A New Microscopic Principle , 1948, Nature.

[44]  H. Rose,et al.  Theory of image formation by inelastically scattered electrons in the electron microscope , 1985 .

[45]  J. M. Cowley,et al.  The scattering of electrons by atoms and crystals. I. A new theoretical approach , 1957 .

[46]  J. Skilling,et al.  Maximum entropy image reconstruction: general algorithm , 1984 .

[47]  Retrieval of crystal defect structures from HREM images by simulated evolution I. Basic technique , 1996 .

[48]  A. Authier,et al.  Diffraction Physics , 1998 .

[49]  E. H. Linfoot Principles of Optics , 1961 .

[50]  J. M. Cowley A New Microscope Principle , 1953 .

[51]  H. Lichte Electron Image Plane Off-axis Holography of Atomic Structures , 1991 .

[52]  Orchowski,et al.  Electron holography surmounts resolution limit of electron microscopy. , 1995, Physical review letters.

[53]  Aberration correction in the STEM , 2022, Electron Microscopy and Analysis 1997.

[54]  Nigel D. Browning,et al.  Practical aspects of atomic resolution imaging and analysis in STEM , 1999 .

[55]  Lord Rayleigh On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .

[56]  D. L. Misell,et al.  Electron diffraction: An introduction for biologists , 1987 .

[57]  L. A. Boatner,et al.  Chemically sensitive structure-imaging with a scanning transmission electron microscope , 1988, Nature.

[58]  P. Nellist,et al.  Direct Imaging of the Atomic Configuration of Ultradispersed Catalysts , 1996, Science.

[59]  R. Gevers KINEMATICAL THEORY OF ELECTRON DIFFRACTION , 1978 .

[60]  A. Howie,et al.  Image Contrast And Localized Signal Selection Techniques , 1979 .

[61]  S. J. Pennycook,et al.  Incoherent imaging of crystals using thermally scattered electrons , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[62]  J. Silcox,et al.  Simulation of annular dark field stem images using a modified multislice method , 1987 .

[63]  H. Rose,et al.  Conditions and reasons for incoherent imaging in STEM , 1996 .

[64]  J. Silcox,et al.  Annular dark field electron microscope images with better than 2 Å resolution at 100 kV , 1989 .

[65]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[66]  Pennycook,et al.  High-resolution incoherent imaging of crystals. , 1990, Physical review letters.

[67]  Günter Möbus,et al.  Retrieval of crystal defect structures from HREM images by simulated evolution II. Experimental image evaluation , 1996 .

[68]  J. M. Cowley,et al.  LATTICE IMAGING IN STEM. , 1978 .

[69]  John C. H. Spence,et al.  Experimental High-Resolution Electron Microscopy , 1980 .

[70]  S. Pennycook,et al.  Direct Observation of Dislocation Core Structures in CdTe/GaAs(001) , 1995, Science.

[71]  J. Zuo,et al.  On the Holz contribution to stem lattice images formed using high-angle dark-field detectors , 1989 .

[72]  J. Silcox,et al.  Thickness effects in ADF STEM zone axis images , 1993 .

[73]  S. Pennycook,et al.  Incoherent imaging of thin specimens using coherently scattered electrons , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[74]  D. Van Dyck,et al.  A simple intuitive theory for electron diffraction , 1996 .

[75]  A. Crewe,et al.  Chromatic aberration effects in small electron probes , 1987 .

[76]  Russell F. Loane,et al.  Annular dark-field imaging: Resolution and thickness effects , 1993 .

[77]  Nobuo Tanaka,et al.  POSITION DEPENDENCE OF THE VISIBILITY OF A SINGLE GOLD ATOM IN SILICON CRYSTALS IN HAADF-STEM IMAGE SIMULATION , 1997 .

[78]  John M. Rodenburg,et al.  Beyond the conventional information limit: the relevant coherence function , 1994 .

[79]  David J Smith,et al.  The realization of atomic resolution with the electron microscope , 1997 .

[80]  A V Crewe,et al.  Visibility of Single Atoms , 1970, Science.

[81]  J. Silcox,et al.  Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging , 1995 .