Euler–Maclaurin and Gregory interpolants

Let a sufficiently smooth function $$f$$f on $$[-1,1]$$[-1,1] be sampled at $$n+1$$n+1 equispaced points, and let $$k\ge 0$$k≥0 be given. An Euler–Maclaurin interpolant to the data is defined, consisting of a sum of a degree $$k$$k algebraic polynomial and a degree $$n$$n trigonometric polynomial, which deviates from $$f$$f by $$O(n^{-k})$$O(n-k) and whose integral is equal to the order $$k$$k Euler–Maclaurin approximation of the integral of $$f$$f. This interpolant makes use of the same derivatives $$f^{( j)}(\pm 1)$$f(j)(±1) as the Euler–Maclaurin formula. A variant Gregory interpolant is also defined, based on finite difference approximations to the derivatives, whose integral (for $$k$$k odd) is equal to the order $$k$$k Gregory approximation to the integral.

[1]  Erich Martensen Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformel mit Hilfe von Spline-Funktionen , 1973 .

[2]  Jean-Paul Berrut,et al.  Fourier and barycentric formulae for equidistant Hermite trigonometric interpolation , 2007 .

[3]  Alex Townsend,et al.  Continuous analogues of matrix factorizations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[5]  Johan M. De Villiers,et al.  Gregory type quadrature based on quadratic nodal spline interpolation , 2000, Numerische Mathematik.

[6]  B. Fornberg CALCULATION OF WEIGHTS IN FINITE DIFFERENCE FORMULAS∗ , 1998 .

[7]  E. Martensen,et al.  Optimale Fehlerschranken für die Quadraturformel von Gregory , 1964 .

[8]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[9]  Bengt Fornberg,et al.  Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..

[10]  P. Köhler Construction of asymptotically best quadrature formulas , 1995 .

[11]  Lloyd N. Trefethen,et al.  Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..

[12]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.

[13]  J. M. Villiers A nodal spline interpolant for the Gregory rule of even order , 1993 .

[14]  L. Trefethen,et al.  A trapezoidal rule error bound unifying the Euler–Maclaurin formula and geometric convergence for periodic functions , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  W. Barrett On the Remainder Term in Numerical Integration Formulae , 1952 .

[16]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[17]  Kai Hormann,et al.  Barycentric rational interpolation with no poles and high rates of approximation , 2007, Numerische Mathematik.

[18]  P. Henrici Barycentric formulas for interpolating trigonometric polynomials and their conjugates , 1979 .

[19]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[20]  Herbert E. Salzer Coefficients for Facilitating Trigonometric Interpolation , 1948 .

[21]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[22]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[23]  J. D. Villiers Mathematics of Approximation , 2012 .

[24]  R. E. Edwards,et al.  Fourier series : a modern introduction , 1982 .

[25]  Helmut Brass,et al.  Quadrature Theory: The Theory of Numerical Integration on a Compact Interval , 2011 .