Euler–Maclaurin and Gregory interpolants
暂无分享,去创建一个
[1] Erich Martensen. Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformel mit Hilfe von Spline-Funktionen , 1973 .
[2] Jean-Paul Berrut,et al. Fourier and barycentric formulae for equidistant Hermite trigonometric interpolation , 2007 .
[3] Alex Townsend,et al. Continuous analogues of matrix factorizations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[4] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[5] Johan M. De Villiers,et al. Gregory type quadrature based on quadratic nodal spline interpolation , 2000, Numerische Mathematik.
[6] B. Fornberg. CALCULATION OF WEIGHTS IN FINITE DIFFERENCE FORMULAS∗ , 1998 .
[7] E. Martensen,et al. Optimale Fehlerschranken für die Quadraturformel von Gregory , 1964 .
[8] Lloyd N. Trefethen,et al. The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..
[9] Bengt Fornberg,et al. Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..
[10] P. Köhler. Construction of asymptotically best quadrature formulas , 1995 .
[11] Lloyd N. Trefethen,et al. Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..
[12] E. N.,et al. The Calculus of Finite Differences , 1934, Nature.
[13] J. M. Villiers. A nodal spline interpolant for the Gregory rule of even order , 1993 .
[14] L. Trefethen,et al. A trapezoidal rule error bound unifying the Euler–Maclaurin formula and geometric convergence for periodic functions , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[15] W. Barrett. On the Remainder Term in Numerical Integration Formulae , 1952 .
[16] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[17] Kai Hormann,et al. Barycentric rational interpolation with no poles and high rates of approximation , 2007, Numerische Mathematik.
[18] P. Henrici. Barycentric formulas for interpolating trigonometric polynomials and their conjugates , 1979 .
[19] Begnaud Francis Hildebrand,et al. Introduction to numerical analysis: 2nd edition , 1987 .
[20] Herbert E. Salzer. Coefficients for Facilitating Trigonometric Interpolation , 1948 .
[21] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids , 1988 .
[22] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[23] J. D. Villiers. Mathematics of Approximation , 2012 .
[24] R. E. Edwards,et al. Fourier series : a modern introduction , 1982 .
[25] Helmut Brass,et al. Quadrature Theory: The Theory of Numerical Integration on a Compact Interval , 2011 .