A data driven method for feature transformation

Most image understanding algorithms begin with the extraction of information thought to be relevant to the particular task. This is commonly known as feature extraction and has, up to this date, been a largely manual process, where a reasonable method is chosen through validation on the experimented dataset. In this work we propose a data driven, local histogram based feature extraction method that reduces the manual intervention during the feature computation process and improves on the performance of widely used gradient histogram based features (e.g., HOG). We demonstrate favorable object detection results against HOG on the Inria Pedestrian[7], Pascal 2007[10] data.

[1]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[2]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[6]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[7]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[8]  Y. LeCun,et al.  Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[9]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[11]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[12]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[13]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  Ankur Agarwal,et al.  Hyperfeatures - Multilevel Local Coding for Visual Recognition , 2006, ECCV.

[15]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[17]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[18]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Quang Nguyen,et al.  The parallelization of video processing , 2009, IEEE Signal Processing Magazine.

[20]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Zhiwei Li,et al.  Max-Margin Dictionary Learning for Multiclass Image Categorization , 2010, ECCV.

[23]  Thomas S. Huang,et al.  Supervised translation-invariant sparse coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[25]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[26]  Jean Ponce,et al.  Task-Driven Dictionary Learning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.