A comparative analysis of the dopaminergic innervation of the executive caudal nidopallium in pigeon, chicken, zebra finch, and carrion crow

Despite the long, separate evolutionary history of birds and mammals, both lineages developed a rich behavioral repertoire of remarkably similar executive control generated by distinctly different brains. The seat for executive functioning in birds is the nidopallium caudolaterale (NCL) and the mammalian equivalent is known as the prefrontal cortex (PFC). Both are densely innervated by dopaminergic fibers, and are an integration center of sensory input and motor output. Whereas the variation of the PFC has been well documented in different mammalian orders, we know very little about the NCL across the avian clade. In order to investigate whether this structure adheres to species‐specific variations, this study aimed to describe the trajectory of the NCL in pigeon, chicken, carrion crow and zebra finch. We employed immunohistochemistry to map dopaminergic innervation, and executed a Gallyas stain to visualize the dorsal arcopallial tract that runs between the NCL and the arcopallium. Our analysis showed that whereas the trajectory of the NCL in the chicken is highly comparable to the pigeon, the two Passeriformes show a strikingly different pattern. In both carrion crow and zebra finch, we identified four different subareas of high dopaminergic innervation that span the entire caudal forebrain. Based on their sensory input, motor output, and involvement in dopamine‐related cognitive control of the delineated areas here, we propose that at least three morphologically different subareas constitute the NCL in these songbirds. Thus, our study shows that comparable to the PFC in mammals, the NCL in birds varies considerably across species.

[1]  C. Mello,et al.  Molecular architecture of the zebra finch arcopallium , 2019, The Journal of comparative neurology.

[2]  S. Woolley,et al.  Dopamine in the songbird auditory cortex shapes auditory preference , 2019, Current Biology.

[3]  Maximilian E. Kirschhock,et al.  Neuronal Correlates of Spatial Working Memory in the Endbrain of Crows , 2019, Current Biology.

[4]  A. Reiner,et al.  The expression of tyrosine hydroxylase and DARPP‐32 in the house crow (Corvus splendens) brain , 2019, The Journal of comparative neurology.

[5]  Torben Ott,et al.  Dopamine and Cognitive Control in Prefrontal Cortex , 2019, Trends in Cognitive Sciences.

[6]  Thomas R Zentall,et al.  Object Permanence in the Pigeon (Columba livia): Insertion of a Delay Prior to Choice Facilitates Visible- and Invisible-Displacement Accuracy , 2019, Journal of comparative psychology.

[7]  J. Chitty Pigeons (Columba livia ) , 2018, Companion Animal Care and Welfare.

[8]  Guillam E. McIvor,et al.  Wild jackdaws are wary of objects that violate expectations of animacy , 2018, Royal Society Open Science.

[9]  Blake S. Porter,et al.  Neurons in the Pigeon Nidopallium Caudolaterale Display Value-Related Activity , 2018, Scientific Reports.

[10]  K. Zilles,et al.  Transmitter receptors reveal segregation of the arcopallium/amygdala complex in pigeons (Columba livia) , 2018, The Journal of comparative neurology.

[11]  Marie Carlén,et al.  What constitutes the prefrontal cortex? , 2017, Science.

[12]  H. Karten,et al.  Heterogeneous organization and connectivity of the chicken auditory thalamus (Gallus gallus) , 2017, The Journal of comparative neurology.

[13]  Andreas Nieder,et al.  Inside the corvid brain—probing the physiology of cognition in crows , 2017, Current Opinion in Behavioral Sciences.

[14]  M. Colombo,et al.  Apes, feathered apes, and pigeons: differences and similarities , 2017, Current Opinion in Behavioral Sciences.

[15]  S. Bottjer,et al.  Cortical inter‐hemispheric circuits for multimodal vocal learning in songbirds , 2017, The Journal of comparative neurology.

[16]  A. Wright,et al.  Corvids Outperform Pigeons and Primates in Learning a Basic Concept , 2017, Psychological science.

[17]  A. Nieder,et al.  Modality-invariant audio-visual association coding in crow endbrain neurons , 2017, Neurobiology of Learning and Memory.

[18]  Michael Colombo,et al.  Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia) , 2017, Behavioural Brain Research.

[19]  L. Marino Thinking chickens: a review of cognition, emotion, and behavior in the domestic chicken , 2017, Animal Cognition.

[20]  M. Tomasello,et al.  Great apes anticipate that other individuals will act according to false beliefs , 2016, Science.

[21]  W. Fitch,et al.  Birds have primate-like numbers of neurons in the forebrain , 2016, Proceedings of the National Academy of Sciences.

[22]  T. Bugnyar,et al.  Cognition without Cortex , 2016, Trends in Cognitive Sciences.

[23]  Cameron Buckner,et al.  Ravens attribute visual access to unseen competitors , 2016, Nature Communications.

[24]  Erich D. Jarvis,et al.  Brain evolution by brain pathway duplication , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  Andreas Nieder,et al.  Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows , 2015, Proceedings of the National Academy of Sciences.

[26]  J. Townsend,et al.  A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing , 2015, Nature.

[27]  O. Güntürkün,et al.  Connectivity and neurochemistry of the commissura anterior of the pigeon (Columba livia) , 2015, The Journal of comparative neurology.

[28]  A. Nieder,et al.  Cross-Modal Associative Mnemonic Signals in Crow Endbrain Neurons , 2015, Current Biology.

[29]  Maik C. Stüttgen,et al.  Blocking NMDA-receptors in the pigeon’s “prefrontal” caudal nidopallium impairs appetitive extinction learning in a sign-tracking paradigm , 2015, Front. Behav. Neurosci..

[30]  Giorgio Vallortigara,et al.  Number-space mapping in the newborn chick resembles humans’ mental number line , 2015, Science.

[31]  E. Jarvis,et al.  Convergent Differential Regulation of SLIT-ROBO Axon Guidance Genes in the Brains of Vocal Learners , 2014, The Journal of comparative neurology.

[32]  William J. Howat,et al.  Tissue fixation and the effect of molecular fixatives on downstream staining procedures , 2014, Methods.

[33]  R. Schmidt,et al.  Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds , 2014, Front. Neural Circuits..

[34]  M. Fee,et al.  A role for descending auditory cortical projections in songbird vocal learning , 2014, eLife.

[35]  Andreas Nieder,et al.  Neuronal Correlates of Visual Working Memory in the Corvid Endbrain , 2014, The Journal of Neuroscience.

[36]  Sarah Starosta,et al.  Recording single neurons' action potentials from freely moving pigeons across three stages of learning. , 2014, Journal of visualized experiments : JoVE.

[37]  Maik C. Stüttgen,et al.  Transient inactivation of the pigeon hippocampus or the nidopallium caudolaterale during extinction learning impairs extinction retrieval in an appetitive conditioning paradigm , 2014, Behavioural Brain Research.

[38]  Michale S. Fee,et al.  An Automated Procedure for Evaluating Song Imitation , 2014, PloS one.

[39]  Andreas Nieder,et al.  Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds , 2013, Nature Communications.

[40]  M. Colombo,et al.  How bad do you want it? Reward modulation in the avian nidopallium caudolaterale. , 2013, Behavioral neuroscience.

[41]  Murray Shanahan,et al.  Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis , 2013, Front. Comput. Neurosci..

[42]  Maik C. Stüttgen,et al.  Stimulus-Response-Outcome Coding in the Pigeon Nidopallium Caudolaterale , 2013, PloS one.

[43]  C. W. Ragsdale,et al.  Cell-type homologies and the origins of the neocortex , 2012, Proceedings of the National Academy of Sciences.

[44]  R. Passingham,et al.  The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight , 2012 .

[45]  Martin Irestedt,et al.  Brains, tools, innovation and biogeography in crows and ravens , 2012, BMC Evolutionary Biology.

[46]  T. Ogura,et al.  Automated measurement of nerve fiber density using line intensity scan analysis , 2012, Journal of Neuroscience Methods.

[47]  T. Bugnyar,et al.  Corvids can decide if a future exchange is worth waiting for , 2012, Biology Letters.

[48]  Onur Güntürkün,et al.  The convergent evolution of neural substrates for cognition , 2012, Psychological research.

[49]  Harlene Hayne,et al.  Pigeons on Par with Primates in Numerical Competence , 2011, Science.

[50]  D. Maney,et al.  Estradiol‐dependent catecholaminergic innervation of auditory areas in a seasonally breeding songbird , 2011, The European journal of neuroscience.

[51]  R. Pinaud,et al.  Estradiol-dependent modulation of auditory processing and selectivity in songbirds , 2011, Frontiers in Neuroendocrinology.

[52]  M. Wullimann,et al.  Differential expression of dopaminergic cell markers in the adult zebrafish forebrain , 2011, The Journal of comparative neurology.

[53]  Karl Zilles,et al.  The receptor architecture of the pigeons’ nidopallium caudolaterale: an avian analogue to the mammalian prefrontal cortex , 2011, Brain Structure and Function.

[54]  M. Colombo,et al.  Brain Cells in the Avian ‘Prefrontal Cortex’ Code for Features of Slot-Machine-Like Gambling , 2011, PloS one.

[55]  G. Hunt,et al.  Tool-Making New Caledonian Crows Have Large Associative Brain Areas , 2010, Brain, Behavior and Evolution.

[56]  Giorgio Vallortigara,et al.  Innate sensitivity for self-propelled causal agency in newly hatched chicks , 2010, Proceedings of the National Academy of Sciences.

[57]  G. Vallortigara,et al.  Perception of biological motion in common marmosets (Callithrix jacchus): by females only , 2010, Animal Cognition.

[58]  J. Wild,et al.  Afferent and efferent projections of the central caudal nidopallium in the pigeon (Columba livia) , 2009, The Journal of comparative neurology.

[59]  J. Call,et al.  Keeping track of time: evidence for episodic-like memory in great apes , 2009, Animal Cognition.

[60]  Steven P. Wise,et al.  Forward frontal fields: phylogeny and fundamental function , 2008, Trends in Neurosciences.

[61]  R. Pinaud,et al.  A songbird forebrain area potentially involved in auditory discrimination and memory formation , 2008, Journal of Biosciences.

[62]  Henrik Mouritsen,et al.  Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin , 2008, PloS one.

[63]  H. Bischof,et al.  Afferentation of a caudal forebrain area activated during courtship behavior: A tracing study in the zebra finch (Taeniopygia guttata) , 2007, Brain Research.

[64]  E. A. MacDougall-Shackleton,et al.  Estradiol modulates brainstem catecholaminergic cell groups and projections to the auditory forebrain in a female songbird , 2007, Brain Research.

[65]  Luis Puelles,et al.  The Chick Brain in Stereotaxic Coordinates: An Atlas featuring Neuromeric Subdivisions and Mammalian Homologies , 2007 .

[66]  Shuji Yamashita,et al.  Heat-induced antigen retrieval: mechanisms and application to histochemistry. , 2007, Progress in histochemistry and cytochemistry.

[67]  P. Goldman-Rakic,et al.  Modulation of Dorsolateral Prefrontal Delay Activity during Self-Organized Behavior , 2006, The Journal of Neuroscience.

[68]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[69]  Stephanie J. Babb,et al.  Discrimination of what, when, and where is not based on time of day , 2006, Learning & behavior.

[70]  R. Knight,et al.  The functional neuroanatomy of working memory: Contributions of human brain lesion studies , 2006, Neuroscience.

[71]  O. Güntürkün The avian ‘prefrontal cortex’ and cognition , 2005, Current Opinion in Neurobiology.

[72]  T. Kalenscher,et al.  Neural correlates of a default response in a delayed go/no-go task. , 2005, Journal of the experimental analysis of behavior.

[73]  O. Güntürkün,et al.  Out of context: NMDA receptor antagonism in the avian 'prefrontal cortex' impairs context processing in a conditional discrimination task. , 2005, Behavioral neuroscience.

[74]  Jonas Rose,et al.  Neural Correlates of Executive Control in the Avian Brain , 2005, PLoS biology.

[75]  T. Kalenscher,et al.  Single Units in the Pigeon Brain Integrate Reward Amount and Time-to-Reward in an Impulsive Choice Task , 2005, Current Biology.

[76]  P. Hurd,et al.  The Evolution of Cerebrotypes in Birds , 2005, Brain, Behavior and Evolution.

[77]  W. McGrew,et al.  Primatology: Advanced Ape Technology , 2004, Current Biology.

[78]  Nicola S. Clayton,et al.  The Mentality of Crows: Convergent Evolution of Intelligence in Corvids and Apes , 2004, Science.

[79]  O. Güntürkün,et al.  Maintenance in working memory or response selection? Functions of NMDA receptors in the pigeon “prefrontal cortex” , 2004, Behavioural Brain Research.

[80]  David J Perkel,et al.  Songbirds and the Revised Avian Brain Nomenclature , 2004, Annals of the New York Academy of Sciences.

[81]  Russell D Gray,et al.  The crafting of hook tools by wild New Caledonian crows , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[82]  B. Kolb,et al.  Do rats have a prefrontal cortex? , 2003, Behavioural Brain Research.

[83]  T. Kalenscher,et al.  Neural architecture of choice behaviour in a concurrent interval schedule , 2003, The European journal of neuroscience.

[84]  O. Güntürkün,et al.  Dissociation of Extinction and Behavioral Disinhibition: The Role of NMDA Receptors in the Pigeon Associative Forebrain during Extinction , 2003, The Journal of Neuroscience.

[85]  O. Güntürkün,et al.  Comparative neurochemistry of the avian forebrain and striatum: a microdialysis study , 2003 .

[86]  C. Redies,et al.  Cadherin expression coincides with birth dating patterns in patchy compartments of the developing chicken telencephalon , 2003, The Journal of comparative neurology.

[87]  L. Lefebvre,et al.  Behavioural flexibility predicts species richness in birds, but not extinction risk , 2003, Animal Behaviour.

[88]  O. Güntürkün,et al.  Nonspatial and Subdivision-Specific Working Memory Deficits after Selective Lesions of the Avian Prefrontal Cortex , 2002, The Journal of Neuroscience.

[89]  O. Güntürkün,et al.  Impaired learning of a color reversal task after NMDA receptor blockade in the pigeon (Columba livia) associative forebrain (neostriatum caudolaterale). , 2002, Behavioral neuroscience.

[90]  M. Metzger,et al.  A quantitative immuno-electron microscopic study of dopamine terminals in forebrain regions of the domestic chick involved in filial imprinting , 2002, Neuroscience.

[91]  Onur Güntürkün,et al.  Functional aspects of dopamine metabolism in the putative prefrontal cortex analogue and striatum of pigeons (Columba livia) , 2002, The Journal of comparative neurology.

[92]  K. Laland,et al.  Social intelligence, innovation, and enhanced brain size in primates , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Onur Güntürkün,et al.  Working Memory Neurons in Pigeons , 2002, The Journal of Neuroscience.

[94]  C. Redies,et al.  Patch/matrix patterns of gray matter differentiation in the telencephalon of chicken and mouse , 2002, Brain Research Bulletin.

[95]  T R Zentall,et al.  Episodic-like memory in pigeons , 2001, Psychonomic bulletin & review.

[96]  C. Redies,et al.  Modularity in vertebrate brain development and evolution , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[97]  K. C. Anderson,et al.  Single neurons in prefrontal cortex encode abstract rules , 2001, Nature.

[98]  G. Ball,et al.  The distribution of tyrosine hydroxylase in the canary brain: demonstration of a specific and sexually dimorphic catecholaminergic innervation of the telencephalic song control nuclei , 2001, Cell and Tissue Research.

[99]  G. Striedter,et al.  Cell Migration and Aggregation in the Developing Telencephalon: Pulse-Labeling Chick Embryos with Bromodeoxyuridine , 2000, The Journal of Neuroscience.

[100]  W. Smeets,et al.  Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach , 2000, Brain Research Reviews.

[101]  O. Güntürkün,et al.  Development of object permanence in food-storing magpies (Pica pica) , 2000 .

[102]  S. Bottjer,et al.  Connections of a motor cortical region in zebra finches: Relation to pathways for vocal learning , 2000, The Journal of comparative neurology.

[103]  A. Reiner,et al.  A simple and sensitive antigen retrieval method for free-floating and slide-mounted tissue sections , 1999, Journal of Neuroscience Methods.

[104]  J. Wild,et al.  Rostral wulst of passerine birds: II. Intratelencephalic projections to nuclei associated with the auditory and song systems , 1999, The Journal of comparative neurology.

[105]  D. Durstewitz,et al.  The dopaminergic innervation of the avian telencephalon , 1999, Progress in Neurobiology.

[106]  O. Güntürkün,et al.  Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro‐ and anterograde pathway tracing study , 1999, The Journal of comparative neurology.

[107]  Reinhild Schnabel,et al.  The dorsocaudal neostriatum of the domestic chick: a structure serving higher associative functions , 1999, Behavioural Brain Research.

[108]  O. Güntürkün,et al.  Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons: Possible behavioral equivalencies to the mammalian prefrontal system , 1998, Behavioural Brain Research.

[109]  H S Terrace,et al.  Ordering of the numerosities 1 to 9 by monkeys. , 1998, Science.

[110]  A. Dickinson,et al.  Episodic-like memory during cache recovery by scrub jays , 1998, Nature.

[111]  M. Metzger,et al.  Organization of the dorsocaudal neostriatal complex: A retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting , 1998, The Journal of comparative neurology.

[112]  M. Novak,et al.  Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). , 1998, Journal of comparative psychology.

[113]  Fernando Nottebohm,et al.  Descending auditory pathways in the adult male zebra finch (Taeniopygia Guttata) , 1998, The Journal of comparative neurology.

[114]  Luigi F. Agnati,et al.  The emergence of the volume transmission concept 1 Published on the World Wide Web on 12 January 1998. 1 , 1998, Brain Research Reviews.

[115]  D. Durstewitz,et al.  The dopaminergic innervation of the pigeon telencephalon: distribution of DARPP-32 and co-occurrence with glutamate decarboxylase and tyrosine hydroxylase , 1998, Neuroscience.

[116]  A. Csillag,et al.  Efferent connections of the domestic chick archistriatum: A phaseolus lectin anterograde tracing study , 1997, The Journal of comparative neurology.

[117]  P. Greengard,et al.  Localization of dopamine D1 receptors and dopaminoceptive neurons in the chick forebrain , 1997, The Journal of comparative neurology.

[118]  R. Schnabel,et al.  Role of the Dorso—Caudal Neostriatum in Filial Imprinting of the Domestic Chick: a Pharmacological and Autoradiographical Approach Focused on the Involvement of NMDA‐Receptors , 1997, The European journal of neuroscience.

[119]  M. Metzger,et al.  Organization of the dopaminergic innervation of forebrain areas relevant to learning: A combined immunohistochemical/retrograde tracing study in the domestic chick , 1996, The Journal of comparative neurology.

[120]  Verner P. Bingman,et al.  Telencephalic afferents to the caudolateral neostriatum of the pigeon , 1996, Brain Research.

[121]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[122]  I. Divac,et al.  Behavioural effects of ablations of the presumed ‘prefrontal cortex’ or the corticoid in pigeons , 1996, Behavioural Brain Research.

[123]  G. E. Vates,et al.  Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taenopygia guttata) , 1996, The Journal of comparative neurology.

[124]  J. Wild,et al.  Organization of afferent and efferent projections of the nucleus basalis prosencephali in a passerine, Taeniopygia guttata , 1996, The Journal of comparative neurology.

[125]  H. Karten,et al.  Intratelencephalic projections of the visual wulst in pigeons (Columba livia) , 1995, The Journal of comparative neurology.

[126]  O. Güntürkün,et al.  Dopaminergic innervation of the telencephalon of the pigeon (Columba livia): A study with antibodies against tyrosine hydroxylase and dopamine , 1995, The Journal of comparative neurology.

[127]  A. Reiner,et al.  Organization of the avian “corticostriatal” projection system: A retrograde and anterograde pathway tracing study in pigeons , 1995, The Journal of comparative neurology.

[128]  F. Vandesande,et al.  Immunocytochemical localization of L‐DOPA and dopamine in the brain of the chicken (Gallus domesticus) , 1994, The Journal of comparative neurology.

[129]  H. Karten,et al.  Connections of the auditory forebrain in the pigeon (columba livia) , 1993, The Journal of comparative neurology.

[130]  Onur Gu¨ntu¨rku¨n,et al.  The dopaminergic innervation of the pigeon caudolateral forebrain: immunocytochemical evidence for a ‘prefrontal cortex’ in birds? , 1993, Brain Research.

[131]  R. Blake Cats Perceive Biological Motion , 1993 .

[132]  J. Kaas,et al.  Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys , 1992, The Journal of comparative neurology.

[133]  B. Berger,et al.  Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates , 1991, Trends in Neurosciences.

[134]  Irene M. Pepperberg,et al.  Object permanence in four species of psittacine birds: An African Grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus) , 1990 .

[135]  G. F. Tremblay,et al.  The Prefrontal Cortex , 1989, Neurology.

[136]  G. Berntson,et al.  Numerical competence in a chimpanzee (Pan troglodytes). , 1989, Journal of comparative psychology.

[137]  K. Herrmann,et al.  Isolation-dependent enhancement of 2-[14C]deoxyglucose uptake in the forebrain of zebra finch males. , 1988, Behavioral and neural biology.

[138]  J. Wild,et al.  The avian somatosensory system: connections of regions of body representation in the forebrain of the pigeon , 1987, Brain Research.

[139]  Y. Sakurai,et al.  Multiple unit activity of prefrontal cortex and dorsomedial thalamus during delayed go/no-go alternation in the rat , 1986, Behavioural Brain Research.

[140]  C. Kitt,et al.  Telencephalic projections from midbrain and isthmal cell groups in the pigeon. II. The nigral complex , 1986, The Journal of comparative neurology.

[141]  Robert A. Boakes,et al.  Transfer of Relational Rules in Matching and Oddity Learning by Pigeons and Corvids , 1985 .

[142]  Hironobu Ito,et al.  Cytoarchitecture and ultrastructure of the avian ectostriatum: Afferent terminals from the dorsal telencephalon and some nuclei in the thalamus , 1985, The Journal of comparative neurology.

[143]  A. Björklund,et al.  The prefrontal ‘cortex’ in the pigeon. Biochemical evidence , 1985, Brain Research.

[144]  J. Wild,et al.  Telencephalic connections of the trigeminal system in the pigeon (Columba livia): A trigeminal sensorimotor circuit , 1985, The Journal of comparative neurology.

[145]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[146]  D. Felten,et al.  Monoamine distribution in primate brain. V. Monoaminergic nuclei: Anatomy, pathways, and local organization , 1982, Brain Research Bulletin.

[147]  Robert Pasnak,et al.  Object permanence in cats and dogs , 1981 .

[148]  J. Pettigrew Comparative Physiology of Binocular Vision , 1980 .

[149]  J. Pettigrew Binocular visual processing in the owl’s telencephalon , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[150]  J. Fallon,et al.  Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum , 1978, The Journal of comparative neurology.

[151]  Anders Björklund,et al.  Organization of catecholamine neurons projecting to the frontal cortex in the rat , 1978, Brain Research.

[152]  J. Pettigrew,et al.  Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). , 1976, Science.

[153]  H. Karten,et al.  Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study , 1976, The Journal of comparative neurology.

[154]  H. Karten,et al.  Visual intensity and pattern discrimination after lesions of the thalamofugal visual pathway in pigeons , 1973, The Journal of comparative neurology.

[155]  I. Divac Delayed response in cats after frontal lesions extending beyond the gyrus proreus. , 1973, Physiology & behavior.

[156]  H Zeier,et al.  The archistriatum of the pigeon: organization of afferent and efferent connections. , 1971, Brain research.

[157]  H. Karten,et al.  A stereotaxic atlas of the brain of the pigeon (Columba livia) , 1967 .

[158]  P. Bateson THE CHARACTERISTICS AND CONTEXT OF IMPRINTING , 1966, Biological reviews of the Cambridge Philosophical Society.

[159]  J. Fuster,et al.  Excitation and Inhibition of Neuronal Firing in Visual Cortex by Reticular Stimulation , 1961, Science.

[160]  W. Krieg Functional Neuroanatomy , 1953, Springer Series in Experimental Entomology.

[161]  O. Güntürkün,et al.  The Brains of Reptiles and Birds , 2020, Evolutionary Neuroscience.

[162]  J. Kaas The origin and evolution of neocortex: From early mammals to modern humans. , 2019, Progress in brain research.

[163]  J. Fuster Chapter 2 – Anatomy of the Prefrontal Cortex , 2015 .

[164]  A. Diamond Executive functions. , 2014, Handbook of clinical neurology.

[165]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[166]  Hans-Joachim Bischof,et al.  A Stereotaxic Atlas Of The Brain Of The Zebra Finch, Taeniopygia Guttata , 2007 .

[167]  Steven L. Thorne,et al.  Rising mean IQ: Cognitive demand of mathematics education for young children, population exposure to formal schooling, and the neurobiology of the prefrontal cortex , 2005 .

[168]  O. Güntürkün,et al.  Sensory projections to the nucleus basalis prosencephali of the pigeon , 2004, Cell and Tissue Research.

[169]  K. Funke,et al.  Somatosensory areas in the telencephalon of the pigeon , 2004, Experimental Brain Research.

[170]  K. Funke Somatosensory areas in the telencephalon of the pigeon , 2004, Experimental Brain Research.

[171]  Christian Seidl,et al.  Preference Reversal , 2002 .

[172]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[173]  O. Güntürkün Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent in pigeons: functional similarities to the mammalian prefrontal system? , 1997, Journal fur Hirnforschung.

[174]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[175]  S. Bottjer,et al.  The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches. , 1993, Journal of neurobiology.

[176]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[177]  I. Divac,et al.  The Prefrontal 'Cortex' in the Pigeon , 1982 .

[178]  L. Green,et al.  Preference reversal and self control: choice as a function of reward amount and delay , 1981 .

[179]  J. Fuster Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. , 1973, Journal of neurophysiology.

[180]  I. Divac,et al.  Retention of spatial delayed alternation in rats with lesions in the frontal lobes. Implications for a comparative neuropsychology of the prefrontal system. , 1973, Brain, behavior and evolution.

[181]  F. Gallyas,et al.  Silver staining of Alzheimer's neurofibrillary changes by means of physical development. , 1971, Acta morphologica Academiae Scientiarum Hungaricae.