Ultrasound excited thermography - advances due to frequency modulated elastic waves

Ultrasound excited thermography allows for defect selective imaging using thermal waves that are generated by elastic waves. The mechanism involved is local friction or hysteresis which turns a dynamically loaded defect into a heat source which is identified by a thermography system. If the excitation frequency matches to a resonance of the vibrating system, temperature patterns can occur that are caused by standing elastic waves. These undesirable patterns can affect the detection of damage in a negative way. We describe a technique how the defect detectability of ultrasound activated thermography can be improved. With the objective of a preferably diffuse distributed sonic field we applied frequency modulated ultrasound to the material. That way the standing waves can be eliminated or reduced so that the detectability is significantly improved.