A complementarity-based approach to phase in finite-dimensional quantum systems
暂无分享,去创建一个
[1] W. Wootters,et al. Optimal state-determination by mutually unbiased measurements , 1989 .
[2] Apostolos Vourdas,et al. Quantum systems with finite Hilbert space , 2004 .
[3] D. Ellinas. Phase operators via group contraction , 1991 .
[4] Chiara Macchiavello. Optimal estimation of multiple phases , 2003 .
[5] Caslav Brukner,et al. Mutually unbiased binary observable sets on N qubits , 2002 .
[6] Discrete phase space based on finite fields , 2004, quant-ph/0401155.
[7] Quantum theory of rotation angles: The problem of angle sum and angle difference , 1998 .
[8] A. Vourdas,et al. SU(2) and SU(1,1) phase states. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[9] Arvind,et al. A generalized Pancharatnam geometric phase formula for three-level quantum systems , 1996, quant-ph/9605042.
[10] P. Kok,et al. Quantum lithography, entanglement and Heisenberg-limited parameter estimation , 2004, quant-ph/0402083.
[11] Paul,et al. Canonical and measured phase distributions. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[12] B. Sanders,et al. Quantum encodings in spin systems and harmonic oscillators , 2001, quant-ph/0109066.
[13] M. Keyl. Fundamentals of quantum information theory , 2002, quant-ph/0202122.
[14] L. Sánchez-Soto,et al. Multicomplementary operators via finite Fourier transform , 2004, quant-ph/0410155.
[15] Howard Mark Wiseman,et al. Optimal input states and feedback for interferometric phase estimation , 2001 .
[16] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[17] Arthur O. Pittenger,et al. Mutually Unbiased Bases, Generalized Spin Matrices and Separability , 2003 .
[18] J. Preskill,et al. Encoding a qubit in an oscillator , 2000, quant-ph/0008040.
[19] A. I. Lvovsky,et al. Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.
[20] L. L. Sanchez-Soto,et al. Quantum phases of a qutrit , 2003 .
[21] J. Schwinger. UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[22] Description of entanglement in terms of quantum phase , 2002, quant-ph/0202100.
[23] G. M. D'Ariano,et al. Phase-covariant quantum cloning , 1999, quant-ph/9909046.
[24] Jinhyoung Lee,et al. Operationally invariant measure of the distance between quantum states by complementary measurements. , 2003, Physical review letters.
[25] Milburn,et al. Optimal quantum measurements for phase estimation. , 1995, Physical review letters.
[26] J. Wheeler,et al. Quantum theory and measurement , 1983 .
[27] Y. Aharonov,et al. The mean king's problem: Prime degrees of freedom , 2001, quant-ph/0101134.
[28] H. Weyl. The Theory Of Groups And Quantum Mechanics , 1931 .
[29] A. Galindo,et al. Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.
[30] D. Bouwmeester,et al. The Physics of Quantum Information , 2000 .
[31] G. J. Milburn,et al. Generation of eigenstates using the phase-estimation algorithm , 2001 .
[32] S. Chaturvedi,et al. Aspects of mutually unbiased bases in odd-prime-power dimensions , 2001, quant-ph/0109003.
[33] G. D’Ariano,et al. Optimal quantum estimation of the coupling between two bosonic modes , 2001, quant-ph/0103080.
[34] C. cohen-tannoudji,et al. Quantum Mechanics: , 2020, Fundamentals of Physics II.
[35] H. Zassenhaus,et al. The Pauli matrices in n dimensions and finest gradings of simple Lie algebras , 1988 .
[36] P. Oscar Boykin,et al. A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.
[37] A. Calderbank,et al. Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .
[38] D. Galetti,et al. An extended Weyl-Wigner transformation for special finite spaces , 1988 .
[39] H. Guise,et al. Coherent state realizations of su(n+1) on the n-torus , 2002 .
[40] Jaehyun Kim,et al. Implementation of phase estimation and quantum counting algorithms on an NMR quantum-information processor , 2002 .
[41] I. D. Ivonovic. Geometrical description of quantal state determination , 1981 .
[42] A. Luis,et al. 6 – Quantum phase difference, phase measurements and stokes operators , 2000 .
[43] Christian Kurtsiefer,et al. Ascertaining the values of sigma x, sigma y, and sigma z of a polarization qubit. , 2003, Physical review letters.
[44] Testing operational phase concepts in quantum optics , 1999, quant-ph/9910092.
[45] W. Wootters. A Wigner-function formulation of finite-state quantum mechanics , 1987 .