Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films.

Organometal halide perovskites have recently attracted tremendous attention due to their potential for photovoltaic applications, and they are also considered as promising materials in light emitting and lasing devices. In this work, we investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3-xClx. The evolution of the characteristics of two excitonic peaks coincides with the structural phase transition around 160 K. Our results further revealed an exciton binding energy of 62.3 ± 8.9 meV and an optical phonon energy of 25.3 ± 5.2 meV, along with an abnormal blue-shift of the band gap in the high-temperature tetragonal phase.

[1]  Laura M Herz,et al.  Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx. , 2014, The journal of physical chemistry letters.

[2]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[3]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[4]  H. Snaith,et al.  The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. , 2014, The journal of physical chemistry letters.

[5]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[6]  J. Dobson,et al.  Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. , 2014, Physical chemistry chemical physics : PCCP.

[7]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[8]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[9]  J. Luther,et al.  Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots , 2013 .

[10]  J. J. Wang,et al.  Photoluminescence study of polycrystalline CsSnI3 thin films: Determination of exciton binding energy , 2012 .

[11]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[12]  Tonu Pullerits,et al.  Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. , 2014, The journal of physical chemistry letters.

[13]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[14]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[15]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[16]  David B. Mitzi,et al.  Organic-inorganic electronics , 2001, IBM J. Res. Dev..

[17]  M. Cardona,et al.  Interband critical points of GaAs and their temperature dependence. , 1987, Physical review. B, Condensed matter.

[18]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[19]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[20]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[21]  Claudine Katan,et al.  Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites , 2014 .

[22]  M. Johnston,et al.  Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films , 2014 .

[23]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[24]  Y. Kanemitsu,et al.  Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes , 2014 .

[25]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[26]  R. Pässler Basic Model Relations for Temperature Dependencies of Fundamental Energy Gaps in Semiconductors , 1997 .

[27]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[28]  Rudin,et al.  Temperature-dependent exciton linewidths in semiconductors. , 1990, Physical review. B, Condensed matter.

[29]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[30]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[31]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.