Chemical interpretation of molecular electron density distributions

In this study, the two small molecules HS(CH)(CH2), 1, and F(CH)4F, 2, are presented, which yield different chemical interpretations when one and the same density is interpreted either by means of Natural Bond Orbital and subsequent Natural Resonance Theory application or by the Quantum Theory of Atoms In Molecules. The first exhibits a SC bond in the orbital based approach, whereas the density based Quantum Theory of Atoms In Molecules detects no corresponding bond. In F(CH)4F a F···F bond is detected in the density based approach, whereas in the orbital based approach no corresponding bond is found. Geometrical reasons for the presence of unexpected and the absence of expected bond critical points are discussed. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007

[1]  B. Engels,et al.  On the Accuracy of Theoretically and Experimentally Determined Electron Densities of Polar Bonds , 2004 .

[2]  D. Stalke,et al.  Raman Spectroscopic Investigation and Coordination Behavior of the Polyimido SVI Anions [RS(NR)3]− and [S(NR)4]2− , 1998 .

[3]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[4]  Philip Coppens,et al.  X-ray charge densities and chemical bonding , 1997 .

[5]  Reinhard Nesper,et al.  A New Look at Electron Localization , 1991 .

[6]  Richard F. W. Bader,et al.  Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity , 1984 .

[7]  D. C. Mckean,et al.  Equilibrium structures for the cis and trans isomers of 1,2-difluoroethylene and the cis,trans isomer of 1,4-difluorobutadiene , 2003 .

[8]  R. Bader,et al.  The mapping of the conditional pair density onto the electron density , 1999 .

[9]  D. Stalke,et al.  S=N versus S+-N-: an experimental and theoretical charge density study. , 2004, Journal of the American Chemical Society.

[10]  Philip Coppens,et al.  Charge densities come of age. , 2005, Angewandte Chemie.

[11]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[12]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[13]  Miroslav Kohout,et al.  A Measure of Electron Localizability , 2004 .

[14]  P. Rademacher Strukturen organischer Moleküle: RADEMACHER:STRUKTUREN O-BK , 2005 .

[15]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[16]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[17]  H. Robertson,et al.  (Dimethylaminomethyl)trifluorosilane, Me2NCH2SiF3—A Model for the α‐Effect in Aminomethylsilanes , 2005 .

[18]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[19]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[20]  N. Wong,et al.  Theoretical Study on the Low-Energy and High-Energy Conformers of the Three Isomers of 1,4-Difluorobutadiene , 2001 .

[21]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[22]  Miquel Solà,et al.  Hydrogen-hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist. , 2006, Chemistry.

[23]  R. Nesper,et al.  Ein neuer Blick auf die Elektronenlokalisierung , 1991 .

[24]  M. Gong,et al.  Origin of cis preference among the three isomers of 1,4‐difluorobutadiene , 2003 .

[25]  Vladimir G. Tsirelson,et al.  Electron Density and Bonding in Crystals , 1996 .

[26]  R. J. Gillespie,et al.  Elektronendomänen und das VSEPR-Modell der Molekülgeometrie , 1996 .

[27]  Walter Thiel,et al.  Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen , 1977 .

[28]  Philip Coppens Die Ladungsdichteanalyse wird erwachsen , 2005 .

[29]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[30]  D. Stalke,et al.  Methylentriimidosulfat H2CS(NtBu)32− – das erste dianionische Schwefel(VI)‐Ylid , 2001 .

[31]  Wenzuo Li,et al.  Internal rotations in the difluorobutadiene and tetrafluorobutadiene molecules: a DFT B3LYP study , 2004 .

[32]  G. G. Hall,et al.  Orthogonal trajectories of the electron density , 1977 .

[33]  D. Stalke,et al.  Si-E (E = N, O, F) bonding in a hexacoordinated silicon complex: new facts from experimental and theoretical charge density studies. , 2004, Journal of the American Chemical Society.

[34]  D. Stalke,et al.  Syntheses and Structures of Main Group Metal Complexes of the S(NtBu)32- Dianion, an Inorganic Y-Conjugated Tripod , 1998 .

[35]  D. Lentz,et al.  Kristallstrukturanalyse von 1,1,4,4‐Tetrafluorbutadien und experimentelle Bestimmung der Ladungsdichte von 1,1,4,4‐Tetrafluorbutatrien , 2002 .

[36]  D. Stalke,et al.  Charge-density study of methane di(triimido)sulfonic acid H2C(S[(NtBu),(NHtbu)]2--the NR analogue of H2C[s(O)2(OH)]2. , 2002, Angewandte Chemie.

[37]  Chérif F Matta,et al.  Hydrogen-hydrogen bonding: a stabilizing interaction in molecules and crystals. , 2003, Chemistry.

[38]  M. Simonetta,et al.  The crystal structure of the monoclinic phase of 2,2‐di‐tert‐butyl‐3,3‐diphenylthiirane at –140°C , 1976 .

[39]  C. Gatti Chemical bonding in crystals: new directions , 2005 .

[40]  R. Bader Pauli repulsions exist only in the eye of the beholder. , 2006, Chemistry.

[41]  T. Schirmeister,et al.  Cysteine protease inhibitors containing small rings. , 2003, Mini reviews in medicinal chemistry.

[42]  J. Nakayama,et al.  Synthesis and Structure of Sterically Congested, New Alkenes, syn- and anti-9,9′-Bibenzonorbornenylidenes , 2000 .

[43]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[44]  Andreas Savin,et al.  Electron probability distribution in AIM and ELF basins , 2003, J. Comput. Chem..

[45]  F. Vögtle,et al.  Auf dem Weg zu makrocyclischen para-Phenylenen , 1993 .

[46]  R. Bader,et al.  A Bond Path: A Universal Indicator of Bonded Interactions , 1998 .

[47]  R. Parr,et al.  Sufficient condition for monotonic electron density decay in many‐electron systems , 2003 .

[48]  Renaud Keriven,et al.  How electrons guard the space: shape optimization with probability distribution criteria , 2004 .

[49]  R. Gillespie,et al.  Electron Domains and the VSEPR Model of Molecular Geometry , 1996 .

[50]  Antonio Vila,et al.  QTAIM study of the electronic structure and strain energy of fluorine substituted oxiranes and thiiranes , 2005 .

[51]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[52]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[53]  Yoon Sup Lee,et al.  Ab initio study of fluorocyclobutenes: an attempt to resolve the difference between microwave spectroscopy and electron diffraction geometries of hexafluorocyclobutene , 1998 .

[54]  H. Robertson,et al.  Three-membered ring or open chain molecule - (F3C)F2SiONMe2 a model for the alpha-effect in silicon chemistry. , 2005, Journal of the American Chemical Society.

[55]  H. Viehe,et al.  Geometrische Isomerenpaare mit bevorzugter cis‐Struktur, VI. 1.4‐Difluor‐ und 1.4‐Dichlor‐butadien‐(1.3) , 1964 .

[56]  W. Adam,et al.  Synthesis of thiiranes by direct sulfur transfer: the challenge of developing effective sulfur donors and metal catalysts. , 2004, Chemical reviews.