Comparative studies on group III σ‐hole and π‐hole interactions

The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.

[1]  Rafael Ramis,et al.  A combined theoretical and Cambridge Structural Database study of π-hole pnicogen bonding complexes between electron rich molecules and both nitro compounds and inorganic bromides (YO2Br, Y = N, P, and As). , 2014, The journal of physical chemistry. A.

[2]  Franck Fuster,et al.  Topological reaction sites--very strong chalcogen bonds. , 2014, Physical chemistry chemical physics : PCCP.

[3]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[4]  Mehdi D. Esrafili,et al.  A theoretical evidence for mutual influence between S···N(C) and hydrogen/lithium/halogen bonds: competition and interplay between π-hole and σ-hole interactions , 2014, Structural Chemistry.

[5]  Peter Politzer,et al.  A predicted new type of directional noncovalent interaction , 2007 .

[6]  Pierangelo Metrangolo,et al.  Chalcogen bonding in crystal engineering , 2005, Acta Crystallographica Section A Foundations and Advances.

[7]  Hugo J. Bohórquez,et al.  QTAIM study of an alpha-helix hydrogen bond network. , 2009, The journal of physical chemistry. B.

[8]  Sławomir J Grabowski,et al.  π-Hole Bonds: Boron and Aluminum Lewis Acid Centers. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  Monique Roux,et al.  Recherches sur la répartition de la densité électronique dans les molécules: I. — Effet de la liaison chimique , 1956 .

[10]  Sampak Samanta,et al.  Indium(I) iodide-mediated cleavage of diphenyl diselenide. An efficient one-pot procedure for the synthesis of unsymmetrical diorganyl selenides. , 2003, Organic letters.

[11]  Lingpeng Meng,et al.  The cooperativity between the σ-hole and π-hole interactions in the ClO···XONO2/XONO···NH3 (X = Cl, Br, I) complexes , 2015, Structural Chemistry.

[12]  Peter Politzer,et al.  An overview of halogen bonding , 2007, Journal of molecular modeling.

[13]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[14]  Xiao Qing Yan,et al.  The competition of σ-hole···Cl(-) and π-hole···Cl(-) bonds between C6F5X (X = F, Cl, Br, I) and the chloride anion and its potential application in separation science. , 2014, The journal of physical chemistry. B.

[15]  José Elguero,et al.  Competition and interplay between σ-hole and π-hole interactions: a computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with ammonia. , 2012, The journal of physical chemistry. A.

[16]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[17]  Lingpeng Meng,et al.  The enhancing effects of group V σ-hole interactions on the F···O halogen bond. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[19]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[20]  Peter Politzer,et al.  Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies , 2010, Journal of molecular modeling.

[21]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[22]  Weiliang Zhu,et al.  Halogen bonding--a novel interaction for rational drug design? , 2009, Journal of medicinal chemistry.

[23]  Peter Politzer,et al.  Expansion of the σ-hole concept , 2009, Journal of molecular modeling.

[24]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Papson,et al.  “Model” , 1981 .

[26]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[27]  David J. Nesbitt,et al.  Definition of the hydrogen bond (IUPAC Recommendations 2011) , 2011 .

[28]  Elangannan Arunan,et al.  The X-C···π (X = F, Cl, Br, CN) carbon bond. , 2014, The journal of physical chemistry. A.

[29]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[30]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[31]  Ayan Datta,et al.  Quantifying Aromaticity at the Molecular and Supramolecular Limits:  Comparing Homonuclear, Heteronuclear, and H-Bonded Systems. , 2006, Journal of chemical theory and computation.

[32]  Lingpeng Meng,et al.  The competition of Y⋯o and X⋯n halogen bonds to enhance the group V σ‐hole interaction in the NCY⋯oPH3⋯NCX and OPH3⋯NCX⋯NCY (X, YF, Cl, and Br) complexes , 2015, J. Comput. Chem..

[33]  Earl L. Muetterties,et al.  Boron Hydride Chemistry , 1975 .

[34]  Kevin E. Riley,et al.  Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor) , 2012 .

[35]  Santiago Alvarez,et al.  A cartography of the van der Waals territories. , 2013, Dalton transactions.

[36]  J. Murray,et al.  Halogen bonding and beyond: factors influencing the nature of CN–R and SiN–R complexes with F–Cl and Cl2 , 2012, Theoretical Chemistry Accounts.

[37]  Lingpeng Meng,et al.  Insight into the lithium/hydrogen bonding in (CH2)2X...LiY/HY (X: C=CH2, O, S; Y=F, Cl, Br) complexes , 2011, Journal of molecular modeling.

[38]  Robert Zaleśny,et al.  The B–H–B bridging interaction in B-substituted oxazaborolidine–borane complexes: a theoretical study , 2013, Structural Chemistry.

[39]  Kevin E. Riley,et al.  σ-Holes, π-holes and electrostatically-driven interactions , 2012, Journal of Molecular Modeling.

[40]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[41]  Timothy Clark,et al.  Mathematical modeling and physical reality in noncovalent interactions , 2015, Journal of Molecular Modeling.

[42]  Sławomir Janusz Grabowski,et al.  What is the covalency of hydrogen bonding? , 2011, Chemical reviews.

[43]  Pavel Hobza,et al.  Blue-Shifting Hydrogen Bonds. , 2000, Chemical reviews.

[44]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[45]  Lester Andrews,et al.  The Infrared Spectrum of Al2H6 in Solid Hydrogen , 2003, Science.

[46]  Hiroshi Nakatsuji,et al.  Topology of density difference and force analysis , 1996 .

[47]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[48]  H. Schmidbaur,et al.  Dichlorogallane (HGaCl(2))(2): its molecular structure and synthetic potential. , 2002, Inorganic chemistry.

[49]  R. Bader,et al.  Identifying and Analyzing Intermolecular Bonding Interactions in van der Waals Molecules , 1996 .

[50]  Hui Li,et al.  Energy decomposition analysis of covalent bonds and intermolecular interactions. , 2009, The Journal of chemical physics.

[51]  Peter Politzer,et al.  Halogen bonding: an interim discussion. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[52]  J. Murray,et al.  σ-hole bonding: molecules containing group VI atoms , 2007 .

[53]  Hakan Kayi,et al.  Natural bond orbital, nuclear magnetic resonance analysis and hybrid-density functional theory study of σ-aromaticity in Al2F6, Al2Cl6, Al2Br6 and Al2I6 , 2013, Journal of Molecular Modeling.

[54]  Timothy Clark,et al.  Halogen bonding and other σ-hole interactions: a perspective. , 2013, Physical chemistry chemical physics : PCCP.

[55]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[56]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..