Modeling incomplete penetrance in arrhythmogenic cardiomyopathy by human induced pluripotent stem cell derived cardiomyocytes

[1]  M. Giacca,et al.  Small non-coding RNA therapeutics for cardiovascular disease , 2022, European heart journal.

[2]  H. Bundgaard,et al.  Loss of Nuclear Envelope Integrity and Increased Oxidant Production Cause DNA Damage in Adult Hearts Deficient in PKP2: A Molecular Substrate of ARVC , 2022, Circulation.

[3]  P. Pramstaller,et al.  GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy , 2022, Journal of cellular and molecular medicine.

[4]  H. Calkins,et al.  Arrhythmogenic Right Ventricular Cardiomyopathy Prevalence and Arrhythmic Outcomes in At-Risk Family Members: A Systematic Review and Meta-Analysis , 2022, Circulation. Genomic and precision medicine.

[5]  É. Kiss,et al.  The Structural and the Functional Aspects of Intercellular Communication in iPSC-Cardiomyocytes , 2022, International journal of molecular sciences.

[6]  S. Hikoso,et al.  Modeling reduced contractility and impaired desmosome assembly due to plakophilin-2 deficiency using isogenic iPS cell-derived cardiomyocytes , 2022, Stem cell reports.

[7]  C. Mummery,et al.  The Linkage Phase of the Polymorphism KCNH2-K897T Influences the Electrophysiological Phenotype in hiPSC Models of LQT2 , 2021, Frontiers in Physiology.

[8]  B. Gerull,et al.  Insights Into Genetics and Pathophysiology of Arrhythmogenic Cardiomyopathy , 2021, Current Heart Failure Reports.

[9]  D. Andreini,et al.  Oxidized LDL‐dependent pathway as new pathogenic trigger in arrhythmogenic cardiomyopathy , 2021, EMBO molecular medicine.

[10]  P. Pramstaller,et al.  Generation and characterization of three human induced pluripotent stem cell lines (EURACi007-A, EURACi008-A, EURACi009-A) from three different individuals of the same family with arrhythmogenic cardiomyopathy (ACM) carrying the plakophillin2 p.N346Lfs*12 mutation. , 2021, Stem cell research.

[11]  S. Weinberg,et al.  Intercalated disk nanoscale structure regulates cardiac conduction , 2021, bioRxiv.

[12]  D. Judge,et al.  International Evidence Based Reappraisal of Genes Associated With Arrhythmogenic Right Ventricular Cardiomyopathy Using the Clinical Genome Resource Framework , 2021, Circulation. Genomic and precision medicine.

[13]  C. Hodgkinson,et al.  The role of Sfrp and DKK proteins in cardiomyocyte development , 2021, Physiological reports.

[14]  M. Bellin,et al.  Mechanotransduction and Adrenergic Stimulation in Arrhythmogenic Cardiomyopathy: An Overview of in vitro and in vivo Models , 2020, Frontiers in Physiology.

[15]  P. Munroe,et al.  State of the Art Review on Genetics and Precision Medicine in Arrhythmogenic Cardiomyopathy , 2020, International journal of molecular sciences.

[16]  R. Lombardi,et al.  Established and Emerging Mechanisms in the Pathogenesis of Arrhythmogenic Cardiomyopathy: A Multifaceted Disease , 2020, International journal of molecular sciences.

[17]  A. Tomilin,et al.  Sodium current abnormalities and deregulation of Wnt/β-catenin signaling in iPSC-derived cardiomyocytes generated from patient with arrhythmogenic cardiomyopathy harboring compound genetic variants in plakophilin 2 gene. , 2020, Biochimica et biophysica acta. Molecular basis of disease.

[18]  B. Gerull,et al.  Genetic Animal Models for Arrhythmogenic Cardiomyopathy , 2020, Frontiers in Physiology.

[19]  Jussi T. Koivumäki,et al.  hiPSC-Derived Cardiomyocyte Model of LQT2 Syndrome Derived from Asymptomatic and Symptomatic Mutation Carriers Reproduces Clinical Differences in Aggregates but Not in Single Cells , 2020, Cells.

[20]  S. Chiou,et al.  Mitochondrial transport mediates survival of retinal ganglion cells in affected LHON patients. , 2020, Human molecular genetics.

[21]  D. Freimark,et al.  Reduction in Filamin C transcript is associated with arrhythmogenic cardiomyopathy in Ashkenazi Jews. , 2020, International journal of cardiology.

[22]  P. Sham,et al.  MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes , 2020, Cardiovascular research.

[23]  L. Mestroni,et al.  FLNC truncations cause arrhythmogenic right ventricular cardiomyopathy , 2020, Journal of Medical Genetics.

[24]  R. Lovering,et al.  RNA sequencing-based transcriptome profiling of cardiac tissue implicates novel putative disease mechanisms in FLNC-associated arrhythmogenic cardiomyopathy. , 2019, International journal of cardiology.

[25]  T. Edvardsen,et al.  High penetrance and similar disease progression in probands and in family members with arrhythmogenic cardiomyopathy , 2019, European heart journal.

[26]  W. Pu,et al.  Molecular mechanisms of arrhythmogenic cardiomyopathy , 2019, Nature Reviews Cardiology.

[27]  Laurent Gatto,et al.  ensembldb: an R package to create and use Ensembl-based annotation resources , 2019, Bioinform..

[28]  Alfred L George,et al.  Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity , 2018, The Journal of clinical investigation.

[29]  C. Brenner,et al.  Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy , 2017, Circulation.

[30]  Benjamin Meder,et al.  Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy. , 2017, Journal of the American College of Cardiology.

[31]  R. Płoski,et al.  Homozygous truncating mutation in NRAP gene identified by whole exome sequencing in a patient with dilated cardiomyopathy , 2017, Scientific Reports.

[32]  J. Casanova,et al.  Capturing the biology of disease severity in a PSC-based model of familial dysautonomia , 2016, Nature Medicine.

[33]  M. Regnier,et al.  Isolation and Mechanical Measurements of Myofibrils from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes , 2016, Stem cell reports.

[34]  Hagen Blankenburg,et al.  Dintor: functional annotation of genomic and proteomic data , 2015, BMC Genomics.

[35]  A. Hicks,et al.  Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids. , 2015, Journal of visualized experiments : JoVE.

[36]  Stefan L. Zimmerman,et al.  Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members , 2015, Circulation. Cardiovascular genetics.

[37]  M. Calore,et al.  Arrhythmogenic cardiomyopathy: a disease of intercalated discs , 2015, Cell and Tissue Research.

[38]  C. R. Bagnell,et al.  Endothelin-1 critically influences cardiac function via superoxide-MMP9 cascade , 2015, Proceedings of the National Academy of Sciences.

[39]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[40]  David Fenyö,et al.  Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. , 2014, Cardiovascular research.

[41]  I. Efimov,et al.  Nanoscale three-dimensional imaging of the human myocyte. , 2014, Journal of structural biology.

[42]  Praveen Shukla,et al.  Chemically defined generation of human cardiomyocytes , 2014, Nature Methods.

[43]  H. T. ter Keurs,et al.  Impact of detubulation on force and kinetics of cardiac muscle contraction , 2014, The Journal of general physiology.

[44]  P. Bross,et al.  Truncating Plakophilin-2 Mutations in Arrhythmogenic Cardiomyopathy Are Associated With Protein Haploinsufficiency in Both Myocardium and Epidermis , 2014, Circulation. Cardiovascular genetics.

[45]  F. Sheikh,et al.  Cell Junctions in the Specialized Conduction System of the Heart , 2014, Cell communication & adhesion.

[46]  Xinmin Yan,et al.  Fatty acid epoxyisoprostane E2 stimulates an oxidative stress response in endothelial cells. , 2014, Biochemical and biophysical research communications.

[47]  L. Gepstein,et al.  Modeling of Arrhythmogenic Right Ventricular Cardiomyopathy With Human Induced Pluripotent Stem Cells , 2013, Circulation. Cardiovascular genetics.

[48]  D. Fenyö,et al.  Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. , 2013, Cardiovascular research.

[49]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[50]  R. Hauer,et al.  Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. , 2013, Heart rhythm.

[51]  H. Calkins,et al.  Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs , 2012, Nature.

[52]  W. Birchmeier,et al.  Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. , 2012, Cardiovascular research.

[53]  J. D. de Bakker,et al.  Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. , 2012, Heart rhythm.

[54]  F. Sheikh,et al.  Cell-cell junction remodeling in the heart: possible role in cardiac conduction system function and arrhythmias? , 2012, Life sciences.

[55]  B. Brenner,et al.  Unequal allelic expression of wild-type and mutated β-myosin in familial hypertrophic cardiomyopathy , 2011, Basic Research in Cardiology.

[56]  P. Elliott,et al.  Familial Evaluation in Arrhythmogenic Right Ventricular Cardiomyopathy: Impact of Genetics and Revised Task Force Criteria , 2011, Circulation.

[57]  S. Anderson,et al.  Cardiac-specific NRAP overexpression causes right ventricular dysfunction in mice. , 2011, Experimental cell research.

[58]  F. Vigneron,et al.  GSK-3β at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. , 2011, Cardiovascular research.

[59]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[60]  G. Thiene,et al.  Arrhythmogenic right ventricular cardiomyopathy/dysplasia on the basis of the revised diagnostic criteria in affected families with desmosomal mutations , 2011, European heart journal.

[61]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[62]  J. Chambers,et al.  Mutational Heterogeneity, Modifier Genes, and Environmental Influences Contribute to Phenotypic Diversity of Arrhythmogenic Cardiomyopathy , 2010, Circulation. Cardiovascular genetics.

[63]  F. Ortega,et al.  Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity , 2010, International Journal of Obesity.

[64]  Wojciech Zareba,et al.  Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Proposed Modification of the Task Force Criteria , 2010, European heart journal.

[65]  S. Scherer,et al.  Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. , 2010, Journal of the American College of Cardiology.

[66]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[67]  S. Scherer,et al.  Abnormal connexin43 in arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 mutations , 2008, Journal of cellular and molecular medicine.

[68]  H. Musa,et al.  Connexin43 Remodeling Caused by Inhibition of Plakophilin-2 Expression in Cardiac Cells , 2007, Circulation research.

[69]  W. Chen,et al.  OKL38 is an oxidative stress response gene stimulated by oxidized phospholipids Published, JLR Papers in Press, December 27, 2006. , 2007, Journal of Lipid Research.

[70]  G. Danieli,et al.  Ultrastructural evidence of intercalated disc remodelling in arrhythmogenic right ventricular cardiomyopathy: an electron microscopy investigation on endomyocardial biopsies. , 2006, European heart journal.

[71]  P. dos Santos,et al.  Involvement of FrzA/sFRP-1 and the Wnt/Frizzled Pathway in Ischemic Preconditioning , 2005, Circulation research.

[72]  R. Horowits,et al.  N‐RAP expression during mouse heart development , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[73]  Walter Birchmeier,et al.  Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy , 2004, Nature Genetics.

[74]  F. van Roy,et al.  Protein Binding and Functional Characterization of Plakophilin 2 , 2002, The Journal of Biological Chemistry.

[75]  E. Lakatta,et al.  Opioid peptide receptor stimulation reverses beta-adrenergic effects in rat heart cells. , 1997, The American journal of physiology.

[76]  D. Corrado,et al.  Arrhythmogenic Cardiomyopathy. , 2017, Circulation research.

[77]  M. Ackerman,et al.  Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. , 2013, Translational research : the journal of laboratory and clinical medicine.

[78]  H. Milting,et al.  Myocardial transcriptome analysis of human arrhythmogenic right ventricular cardiomyopathy. , 2012, Physiological genomics.

[79]  G. Danieli,et al.  Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. , 2010, Heart rhythm.