James Stein Estimator for the Inverse Gaussian Regression Model

This paper considers the estimation of parameters for the inverse Gaussian regression model in the presence of multicollinearity. To mitigate this issue, we propose the inverse Gaussian James–Stein estimator (IGJSE) and compare its performance with other estimation methods i.e. maximum likelihood estimator (MLE), ridge and Liu estimators. Theoretical comparisons between the usual MLE, ridge, Liu and IGJSE are derived using matrix mean − squared error and scalar mean squared error criterions. The statistical properties of these estimators are systematically scrutinized via a Monte Carlo simulation. The findings of the simulation study clearly demonstrate that the proposed IGJSE showed a consistent behaviour as compared to the other estimation methods in all the evaluated situations. Finally, we evaluate the performance of IGJSE with the help of real example. The simulation and real example results show that the performance of IGJSE is better as compared to other estimation methods with correlated explanatory variables.

[1]  F. Akdeniz,et al.  Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models , 2019 .

[2]  Hu Yang,et al.  A new Liu-type estimator in linear regression model , 2012 .

[3]  F. Akdeniz,et al.  A new difference-based weighted mixed Liu estimator in partially linear models , 2018, Statistics.

[4]  M. I. Alheety,et al.  ON THE LIU AND ALMOST UNBIASED LIU ESTIMATORS IN THE PRESENCE OF MULTICOLLINEARITY WITH HETEROSCEDASTIC OR CORRELATED ERRORS , 2009 .

[5]  R. Frisch Statistical confluence analysis by means of complete regression systems , 1934 .

[6]  G. Khalaf,et al.  Choosing Ridge Parameter for Regression Problems , 2005 .

[7]  Z. Algamal Shrinkage estimators for gamma regression model , 2018 .

[8]  K. Månsson On ridge estimators for the negative binomial regression model , 2012 .

[9]  Mohammad Ghasem Akbari,et al.  Ridge estimation in semi-parametric regression models under the stochastic restriction and correlated elliptically contoured errors , 2020, J. Comput. Appl. Math..

[10]  Muhammad Amin,et al.  Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.

[11]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[12]  M. Arashi,et al.  Generalized Cross-Validation for Simultaneous Optimization of Tuning Parameters in Ridge Regression , 2020 .

[13]  Tahir Mahmood,et al.  Memory type control charts with inverse-Gaussian response: An application to yarn manufacturing industry: , 2020 .

[14]  Muhammad Amin,et al.  A new Liu-type estimator for the Inverse Gaussian Regression Model , 2020 .

[15]  M. Amin,et al.  Empirical evaluation of the inverse Gaussian regression residuals for the assessment of influential points , 2016 .

[17]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[18]  G. Khalaf,et al.  A Tobit Ridge Regression Estimator , 2014 .

[19]  R. Schaefer Alternative estimators in logistic regression when the data are collinear , 1986 .

[20]  M. Amin,et al.  Two-parameter estimator for the inverse Gaussian regression model , 2020, Commun. Stat. Simul. Comput..

[21]  M. Ullah,et al.  Diagnostic techniques for the inverse Gaussian regression model , 2020, Communications in Statistics - Theory and Methods.

[22]  M. Amin,et al.  On the James-Stein estimator for the poisson regression model , 2020, Commun. Stat. Simul. Comput..

[23]  B. M. Kibria,et al.  A new Poisson Liu Regression Estimator: method and application , 2019, Journal of applied statistics.

[24]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[25]  B. M. Golam Kibria,et al.  Some Liu and ridge-type estimators and their properties under the ill-conditioned Gaussian linear regression model , 2012 .

[26]  Z. Algamal Developing a ridge estimator for the gamma regression model , 2018, Journal of Chemometrics.

[27]  Kristofer Månsson,et al.  A Poisson ridge regression estimator , 2011 .

[28]  M. Amin,et al.  Performance of some ridge estimators for the gamma regression model , 2020 .

[29]  Muhammad Amin,et al.  New shrinkage parameters for the inverse Gaussian Liu regression , 2020, Communications in Statistics - Theory and Methods.

[30]  Mohammad Arashi,et al.  Feasible ridge estimator in partially linear models , 2013, J. Multivar. Anal..

[31]  Muhammad Amin,et al.  On the estimation of Bell regression model using ridge estimator , 2021, Commun. Stat. Simul. Comput..

[32]  Boris Yu. Lemeshko,et al.  Inverse Gaussian Model and Its Applications in Reliability and Survival Analysis , 2010 .

[33]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[34]  Muhammad Amin,et al.  GLM-based control charts for the inverse Gaussian distributed response variable , 2020, Quality and Reliability Eng. Int..

[35]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[36]  Muhammad Amin,et al.  Bayesian estimation of ridge parameter under different loss functions , 2020, Communications in Statistics - Theory and Methods.

[37]  S. M. M. Tabatabaey,et al.  On the Preliminary Test Generalized Liu Estimator with Series of Stochastic Restrictions , 2019, Journal of the Iranian Statistical Society.

[38]  Muhammad Faisal,et al.  Influence diagnostics in the inverse Gaussian ridge regression model: Applications in chemometrics , 2021 .

[39]  K. Månsson Developing a Liu estimator for the negative binomial regression model: method and application , 2013 .

[40]  Z. Algamal Performance of ridge estimator in inverse Gaussian regression model , 2019 .

[41]  B. Segerstedt On ordinary ridge regression in generalized linear models , 1992 .

[43]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[44]  G. K. Bhattacharyya,et al.  Inverse Gaussian regression and accelerated life tests , 1982 .

[45]  A. Lukman,et al.  Review and classications of the ridge parameter estimation techniques , 2017 .

[46]  R. W. Farebrother,et al.  Further Results on the Mean Square Error of Ridge Regression , 1976 .

[47]  Wei Liu Simultaneous prediction intervals for all distances from the “best” , 1993 .

[48]  M. Amin,et al.  On the performance of some new Liu parameters for the gamma regression model , 2018, Journal of Statistical Computation and Simulation.

[49]  Robert L. Mason,et al.  Statistical Design and Analysis of Experiments , 2003 .

[50]  Gillian Z. Heller,et al.  Generalized Linear Models for Insurance Data , 2008 .

[51]  B. M. Golam Kibria,et al.  Performance of Some Logistic Ridge Regression Estimators , 2012 .