James Stein Estimator for the Inverse Gaussian Regression Model
暂无分享,去创建一个
[1] F. Akdeniz,et al. Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models , 2019 .
[2] Hu Yang,et al. A new Liu-type estimator in linear regression model , 2012 .
[3] F. Akdeniz,et al. A new difference-based weighted mixed Liu estimator in partially linear models , 2018, Statistics.
[4] M. I. Alheety,et al. ON THE LIU AND ALMOST UNBIASED LIU ESTIMATORS IN THE PRESENCE OF MULTICOLLINEARITY WITH HETEROSCEDASTIC OR CORRELATED ERRORS , 2009 .
[5] R. Frisch. Statistical confluence analysis by means of complete regression systems , 1934 .
[6] G. Khalaf,et al. Choosing Ridge Parameter for Regression Problems , 2005 .
[7] Z. Algamal. Shrinkage estimators for gamma regression model , 2018 .
[8] K. Månsson. On ridge estimators for the negative binomial regression model , 2012 .
[9] Mohammad Ghasem Akbari,et al. Ridge estimation in semi-parametric regression models under the stochastic restriction and correlated elliptically contoured errors , 2020, J. Comput. Appl. Math..
[10] Muhammad Amin,et al. Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.
[11] B. M. Kibria,et al. Performance of Some New Ridge Regression Estimators , 2003 .
[12] M. Arashi,et al. Generalized Cross-Validation for Simultaneous Optimization of Tuning Parameters in Ridge Regression , 2020 .
[13] Tahir Mahmood,et al. Memory type control charts with inverse-Gaussian response: An application to yarn manufacturing industry: , 2020 .
[14] Muhammad Amin,et al. A new Liu-type estimator for the Inverse Gaussian Regression Model , 2020 .
[15] M. Amin,et al. Empirical evaluation of the inverse Gaussian regression residuals for the assessment of influential points , 2016 .
[17] R. Allen,et al. Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .
[18] G. Khalaf,et al. A Tobit Ridge Regression Estimator , 2014 .
[19] R. Schaefer. Alternative estimators in logistic regression when the data are collinear , 1986 .
[20] M. Amin,et al. Two-parameter estimator for the inverse Gaussian regression model , 2020, Commun. Stat. Simul. Comput..
[21] M. Ullah,et al. Diagnostic techniques for the inverse Gaussian regression model , 2020, Communications in Statistics - Theory and Methods.
[22] M. Amin,et al. On the James-Stein estimator for the poisson regression model , 2020, Commun. Stat. Simul. Comput..
[23] B. M. Kibria,et al. A new Poisson Liu Regression Estimator: method and application , 2019, Journal of applied statistics.
[24] Liu Kejian,et al. A new class of blased estimate in linear regression , 1993 .
[25] B. M. Golam Kibria,et al. Some Liu and ridge-type estimators and their properties under the ill-conditioned Gaussian linear regression model , 2012 .
[26] Z. Algamal. Developing a ridge estimator for the gamma regression model , 2018, Journal of Chemometrics.
[27] Kristofer Månsson,et al. A Poisson ridge regression estimator , 2011 .
[28] M. Amin,et al. Performance of some ridge estimators for the gamma regression model , 2020 .
[29] Muhammad Amin,et al. New shrinkage parameters for the inverse Gaussian Liu regression , 2020, Communications in Statistics - Theory and Methods.
[30] Mohammad Arashi,et al. Feasible ridge estimator in partially linear models , 2013, J. Multivar. Anal..
[31] Muhammad Amin,et al. On the estimation of Bell regression model using ridge estimator , 2021, Commun. Stat. Simul. Comput..
[32] Boris Yu. Lemeshko,et al. Inverse Gaussian Model and Its Applications in Reliability and Survival Analysis , 2010 .
[33] G. C. McDonald,et al. A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .
[34] Muhammad Amin,et al. GLM-based control charts for the inverse Gaussian distributed response variable , 2020, Quality and Reliability Eng. Int..
[35] B. M. Golam Kibria,et al. Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .
[36] Muhammad Amin,et al. Bayesian estimation of ridge parameter under different loss functions , 2020, Communications in Statistics - Theory and Methods.
[37] S. M. M. Tabatabaey,et al. On the Preliminary Test Generalized Liu Estimator with Series of Stochastic Restrictions , 2019, Journal of the Iranian Statistical Society.
[38] Muhammad Faisal,et al. Influence diagnostics in the inverse Gaussian ridge regression model: Applications in chemometrics , 2021 .
[39] K. Månsson. Developing a Liu estimator for the negative binomial regression model: method and application , 2013 .
[40] Z. Algamal. Performance of ridge estimator in inverse Gaussian regression model , 2019 .
[41] B. Segerstedt. On ordinary ridge regression in generalized linear models , 1992 .
[43] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[44] G. K. Bhattacharyya,et al. Inverse Gaussian regression and accelerated life tests , 1982 .
[45] A. Lukman,et al. Review and classications of the ridge parameter estimation techniques , 2017 .
[46] R. W. Farebrother,et al. Further Results on the Mean Square Error of Ridge Regression , 1976 .
[47] Wei Liu. Simultaneous prediction intervals for all distances from the “best” , 1993 .
[48] M. Amin,et al. On the performance of some new Liu parameters for the gamma regression model , 2018, Journal of Statistical Computation and Simulation.
[49] Robert L. Mason,et al. Statistical Design and Analysis of Experiments , 2003 .
[50] Gillian Z. Heller,et al. Generalized Linear Models for Insurance Data , 2008 .
[51] B. M. Golam Kibria,et al. Performance of Some Logistic Ridge Regression Estimators , 2012 .