Simultaneous enhancement of mechanical and ablation properties of C/C composites modified by (Hf-Ta-Zr)C solid solution ceramics

[1]  J. Lv,et al.  A novel (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2100 °C , 2022, Composites Part B: Engineering.

[2]  Chenglong Hu,et al.  Cyclic ablation resistance at 2300 °C of (Hf0.4Zr0.4Ta0.2)B2-SiC-Si coating for C/SiC composites prepared by SiC-assisted reactive infiltration of silicon , 2022, Surface and Coatings Technology.

[3]  Hui‐Ming Cheng,et al.  Pitch resin addition induced evolution of composition, microstructure and mechanical property of C/C-SiC-ZrC composites , 2022, Journal of the European Ceramic Society.

[4]  F. Huang,et al.  C/C–SiC composites derived from single‐source poly(silylene acetylene) precursors , 2022, International Journal of Applied Ceramic Technology.

[5]  Q. Fu,et al.  Two birds with one stone: Simultaneous fabrication of HfC nanowires and CNTs through efficient utilization of polymer-derived ceramics , 2022, Journal of Materials Science & Technology.

[6]  Jiecai Han,et al.  Advances in ultra-high temperature ceramics, composites, and coatings , 2021, Journal of Advanced Ceramics.

[7]  M. Reece,et al.  Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2,100°C , 2021, Journal of Materials Science & Technology.

[8]  Ke Peng,et al.  Effect of high-temperature heat treatment on the microstructure and mechanical behavior of PIP-based C/C-SiC composites with SiC filler , 2021, Journal of the European Ceramic Society.

[9]  Y. Kogo,et al.  Hot-corrosion of refractory high-entropy ceramic matrix composites synthesized by alloy melt-infiltration , 2021, Ceramics International.

[10]  X. Xiong,et al.  Oxidation behavior of non-stoichiometric (Zr,Hf,Ti)Cx carbide solid solution powders in air , 2021, Journal of Advanced Ceramics.

[11]  Yulei Zhang,et al.  Ablation-resistant Ta0.78Hf0.22C solid solution ceramic modified C/C composites for oxidizing environments over 2200 °C , 2021 .

[12]  Y. Bin,et al.  First principle study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions , 2021 .

[13]  Jian Luo,et al.  Part II: Experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics , 2020 .

[14]  Yulei Zhang,et al.  Microstructure and anti-ablation performance of HfC-TaC and HfC-ZrC coatings synthesized by CVD on C/C composites , 2020 .

[15]  T. Zhao,et al.  Transformation of metallic polymer precursor into nanosized HfTaC2 ceramics , 2020 .

[16]  J. Zou,et al.  Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a review , 2019, International Materials Reviews.

[17]  Song Wang,et al.  High-temperature mechanical properties and microstructure of C/C‒ZrC‒SiC‒ZrB2 composites prepared by a joint process of precursor infiltration and pyrolysis and slurry infiltration , 2019, Journal of Alloys and Compounds.

[18]  Fei Rao,et al.  Preparation and properties of C/C−ZrB2−SiC composites by high-solid-loading slurry impregnation and polymer infiltration and pyrolysis (PIP) , 2019, Transactions of Nonferrous Metals Society of China.

[19]  K. Roh,et al.  Bond characteristics, mechanical properties, and high‐temperature thermal conductivity of (Hf 1−x Ta x )C composites , 2019, Journal of the American Ceramic Society.

[20]  A. Navrotsky,et al.  In‐situ determination of the HfO 2 –Ta 2 O 5 ‐temperature phase diagram up to 3000°C , 2019, Journal of the American Ceramic Society.

[21]  Si’an Chen,et al.  Properties of C/C–ZrC composites prepared by precursor infiltration and pyrolysis with a meltable precursor , 2019, Materials Research Express.

[22]  S. Grasso,et al.  Arc melting: a novel method to prepare homogeneous solid solutions of transition metal carbides (Zr, Ta, Hf) , 2019, Ceramics International.

[23]  Hejun Li,et al.  Microstructure and ablation property of C/C-ZrC-SiC composites fabricated by chemical liquid-vapor deposition combined with precursor infiltration and pyrolysis , 2019, Ceramics International.

[24]  T. Zhao,et al.  Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: Synthesis, microstructure and properties , 2019, Journal of the European Ceramic Society.

[25]  T. Wen,et al.  High‐temperature oxidation behavior of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramics in air , 2019, Journal of the American Ceramic Society.

[26]  S. Grasso,et al.  Processing and Properties of High-Entropy Ultra-High Temperature Carbides , 2018, Scientific Reports.

[27]  Peng Lei,et al.  Effect of ablative angles on the ablation behaviors of ZrB2-SiC modified carbon/carbon composites , 2018 .

[28]  Wei Li,et al.  Preparation, ablation behavior and mechanism of C/C-ZrC-SiC and C/C-SiC composites , 2018 .

[29]  Yiguang Wang,et al.  Comparative ablation behaviors of C/SiC-HfC composites prepared by reactive melt infiltration and precursor infiltration and pyrolysis routes , 2017 .

[30]  Xuejian Liu,et al.  Pressurelessly densified (Zr,Hf)B2-SiC ceramics by co-doping hafnium-boron carbides , 2017 .

[31]  Xiaohong Shi,et al.  Effects of SiC interphase on the mechanical and ablation properties of C/C-ZrC-ZrB2-SiC composites prepared by precursor infiltration and pyrolysis , 2017 .

[32]  S. Seal,et al.  Solid solution synthesis of tantalum carbide‐hafnium carbide by spark plasma sintering , 2017 .

[33]  G. Hilmas,et al.  Ultra-high temperature ceramics: Materials for extreme environments , 2017 .

[34]  L. Rangaraj,et al.  Processing and characterization of Cf/ZrB2-SiC-ZrC composites produced at moderate pressure and temperature , 2017 .

[35]  Q. Fu,et al.  Optimizing matrix and fiber/matrix interface to achieve combination of strength, ductility and toughness in carbon nanotube-reinforced carbon/carbon composites , 2017 .

[36]  Salvatore Grasso,et al.  Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system , 2016, Scientific Reports.

[37]  Hejun Li,et al.  Effects of high-temperature annealing on the microstructures and mechanical properties of C/C–ZrC–SiC composites prepared by precursor infiltration and pyrolysis , 2016 .

[38]  Hejun Li,et al.  Ablation behavior and mechanism of C/C-HfC-SiC composites , 2015 .

[39]  Qizhong Huang,et al.  Microstructure and ablation behavior of C/C–HfC composites prepared by precursor infiltration and pyrolysis , 2015 .

[40]  Jiecai Han,et al.  Research progress on ultra-high temperature ceramic composites , 2015 .

[41]  Li Kezhi,et al.  Preparation and Properties of C/C-ZrC-SiC-ZrB2 Composites via Polymer Infiltration and Pyrolysis: Preparation and Properties of C/C-ZrC-SiC-ZrB2 Composites via Polymer Infiltration and Pyrolysis , 2013 .

[42]  G. Thompson,et al.  Influence of hafnium carbide on vacuum plasma spray processed tantalum carbide microstructures , 2013 .

[43]  Mengjiao Gao,et al.  Ablation Properties of C/C-ZrC-SiC Composites , 2011 .

[44]  D. Koch,et al.  Effects of thermal and thermomechanical induced mechanical changes of C/C composites , 2010 .

[45]  K. Nakano,et al.  Thermodynamics of Zr/Hf-mixed silicates as a potential for environmental barrier coatings for Tyranno-hex materials , 2009 .

[46]  M. Nygren,et al.  Densification and Mechanical Behavior of HfC and HfB2 Fabricated by Spark Plasma Sintering , 2008 .

[47]  N. Tanatsugu,et al.  Applications of carbon-carbon composites to an engine for a future space vehicle , 2003 .

[48]  S. K. Naik,et al.  A constitutional diagram of the system TiC−HfC−“MoC” , 1977 .

[49]  N. M. Tallan,et al.  The Svstern Zirconia‐Hafnia , 1968 .