On the best rank-1 approximation to higher-order symmetric tensors

In this paper, we consider the best rank-1 approximation to higher-order symmetric tensors in the least-squares sense, and show that the best rank-1 approximation of a symmetric tensor with even order m can be determined by m/2 unit spheres and a best symmetric rank-1 approximation of a symmetric tensor with order 4 and dimension 2 is also its best rank-1 approximation.

[1]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[2]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[3]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[4]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[5]  Gian-Carlo Rota,et al.  Apolarity and Canonical Forms for Homogeneous Polynomials , 1993, Eur. J. Comb..

[6]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[7]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[8]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[9]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[10]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[11]  P. McCullagh Tensor Methods in Statistics , 1987 .

[12]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[13]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[14]  C. L. Nikias,et al.  Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.

[15]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[16]  L. Lathauwer First-order perturbation analysis of the best rank-(R1, R2, R3) approximation in multilinear algebra , 2004 .

[17]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[18]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[19]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..