Wnt signalling tunes neurotransmitter release by directly targeting Synaptotagmin-1

[1]  Y. Shinoda,et al.  BDNF enhances spontaneous and activity-dependent neurotransmitter release at excitatory terminals but not at inhibitory terminals in hippocampal neurons , 2014, Front. Synaptic Neurosci..

[2]  E. Chapman,et al.  Linker mutations dissociate the function of synaptotagmin I during evoked and spontaneous release and reveal membrane penetration as a step during excitation-secretion coupling , 2014, Nature neuroscience.

[3]  A. Fine,et al.  The expression of long-term potentiation: reconciling the preists and the postivists , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  Shunyou Long,et al.  High-throughput genetic screen for synaptogenic factors: identification of LRP6 as critical for excitatory synapse development. , 2013, Cell reports.

[5]  Christian Rosenmund,et al.  Ultrafast endocytosis at mouse hippocampal synapses , 2013, Nature.

[6]  P. Scheiffele,et al.  mSYD1A, a Mammalian Synapse-Defective-1 Protein, Regulates Synaptogenic Signaling and Vesicle Docking , 2013, Neuron.

[7]  Pablo Ariel,et al.  Intrinsic variability in Pv, RRP size, Ca2+ channel repertoire, and presynaptic potentiation in individual synaptic boutons , 2012, Front. Syn. Neurosci..

[8]  D. Kullmann,et al.  Independent Regulation of Basal Neurotransmitter Release Efficacy by Variable Ca2+ Influx and Bouton Size at Small Central Synapses , 2012, PLoS biology.

[9]  G. Aramuni,et al.  Neurexin and Neuroligin Mediate Retrograde Synaptic Inhibition in C. elegans , 2012, Science.

[10]  Kamran Diba,et al.  Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons , 2012, Hippocampus.

[11]  T. Südhof The Presynaptic Active Zone , 2012, Neuron.

[12]  W. Regehr Short-term presynaptic plasticity. , 2012, Cold Spring Harbor perspectives in biology.

[13]  P. Salinas Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. , 2012, Cold Spring Harbor perspectives in biology.

[14]  A. Gibb,et al.  Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca2+/Calmodulin-dependent protein kinase II , 2011, Proceedings of the National Academy of Sciences.

[15]  V. Budnik,et al.  Wnt signaling during synaptic development and plasticity , 2011, Current Opinion in Neurobiology.

[16]  Silvio O. Rizzoli,et al.  Synaptic Vesicle Pools: An Update , 2010, Front. Syn. Neurosci..

[17]  Ye Guang Chen,et al.  Dishevelled: The hub of Wnt signaling. , 2010, Cellular signalling.

[18]  E. Arenas,et al.  Emerging roles of Wnts in the adult nervous system , 2010, Nature Reviews Neuroscience.

[19]  Dietmar Riedel,et al.  Synaptotagmin-1 Docks Secretory Vesicles to Syntaxin-1/SNAP-25 Acceptor Complexes , 2009, Cell.

[20]  H. Eichenbaum,et al.  Robust Conjunctive Item–Place Coding by Hippocampal Neurons Parallels Learning What Happens Where , 2009, The Journal of Neuroscience.

[21]  Edwin R. Chapman,et al.  Autapses and Networks of Hippocampal Neurons Exhibit Distinct Synaptic Transmission Phenotypes in the Absence of Synaptotagmin I , 2009, The Journal of Neuroscience.

[22]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[23]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[24]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[25]  Edwin R Chapman,et al.  How does synaptotagmin trigger neurotransmitter release? , 2008, Annual review of biochemistry.

[26]  N. Inestrosa,et al.  Wnt-7a Modulates the Synaptic Vesicle Cycle and Synaptic Transmission in Hippocampal Neurons* , 2008, Journal of Biological Chemistry.

[27]  Makoto Matsuyama,et al.  Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/β‐catenin and the planar cell polarity pathways during early trunk formation in mouse , 2008, Genesis.

[28]  Charles F Stevens,et al.  Discharge of the readily releasable pool with action potentials at hippocampal synapses. , 2007, Journal of neurophysiology.

[29]  Vadim Zinchuk,et al.  Quantitative Colocalization Analysis of Multicolor Confocal Immunofluorescence Microscopy Images: Pushing Pixels to Explore Biological Phenomena , 2007, Acta histochemica et cytochemica.

[30]  Tsutomu Hashikawa,et al.  Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin , 2007, Nature Neuroscience.

[31]  K. Mikoshiba,et al.  Dvl regulates endo‐ and exocytotic processes through binding to synaptotagmin , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[32]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[33]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[34]  M. Moser,et al.  Fast rate coding in hippocampal CA3 cell ensembles , 2006, Hippocampus.

[35]  P. Stanton,et al.  BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses , 2006, The Journal of physiology.

[36]  N. Fredj,et al.  Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release , 2006, The Journal of cell biology.

[37]  Demet Araç,et al.  Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. , 2006, Trends in cell biology.

[38]  Felix E Schweizer,et al.  The synaptic vesicle: cycle of exocytosis and endocytosis , 2006, Current Opinion in Neurobiology.

[39]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[40]  T. Sūdhof The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[41]  Yoshiaki Kawano,et al.  Secreted antagonists of the Wnt signalling pathway , 2003, Journal of Cell Science.

[42]  John F. Wesseling,et al.  Limit on the Role of Activity in Controlling the Release-Ready Supply of Synaptic Vesicles , 2002, The Journal of Neuroscience.

[43]  E. Chapman,et al.  Role of synaptotagmin in Ca2+-triggered exocytosis. , 2002, The Biochemical journal.

[44]  Edwin R. Chapman,et al.  Synaptotagmin: A Ca2+ sensor that triggers exocytosis? , 2002, Nature Reviews Molecular Cell Biology.

[45]  L. Dobrunz,et al.  Release probability is regulated by the size of the readily releasable vesicle pool at excitatory synapses in hippocampus , 2002, International Journal of Developmental Neuroscience.

[46]  Chinfei Chen,et al.  Brain-Derived Neurotrophic Factor Modulates Cerebellar Plasticity and Synaptic Ultrastructure , 2002, The Journal of Neuroscience.

[47]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[48]  Tao Xu,et al.  SV2 modulates the size of the readily releasable pool of secretory vesicles , 2001, Nature Cell Biology.

[49]  W. Tyler,et al.  BDNF Enhances Quantal Neurotransmitter Release and Increases the Number of Docked Vesicles at the Active Zones of Hippocampal Excitatory Synapses , 2001, The Journal of Neuroscience.

[50]  T. Schikorski,et al.  Morphological correlates of functionally defined synaptic vesicle populations , 2001, Nature Neuroscience.

[51]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[52]  P. Salinas,et al.  Dishevelled-1 Regulates Microtubule Stability , 2000, The Journal of cell biology.

[53]  A. Hall,et al.  Axonal Remodeling and Synaptic Differentiation in the Cerebellum Is Regulated by WNT-7a Signaling , 2000, Cell.

[54]  L. Zhang,et al.  Impairments in High-Frequency Transmission, Synaptic Vesicle Docking, and Synaptic Protein Distribution in the Hippocampus of BDNF Knockout Mice , 1999, The Journal of Neuroscience.

[55]  J. Buchanan,et al.  Morphologically Docked Synaptic Vesicles Are Reduced insynaptotagmin Mutants of Drosophila , 1998, The Journal of Neuroscience.

[56]  C. Stevens,et al.  Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synapses , 1997, Neuron.

[57]  P. Schulz,et al.  Long-term potentiation involves increases in the probability of neurotransmitter release. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  T. Bouwmeester,et al.  Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer , 1997, Cell.

[59]  D. Johnston,et al.  Using paired-pulse facilitation to probe the mechanisms for long-term potentiation (LTP) , 1995, Journal of Physiology-Paris.

[60]  S. Nauenburg,et al.  Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. , 1995, The EMBO journal.

[61]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[62]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[63]  Christian Rosenmund,et al.  Nonuniform probability of glutamate release at a hippocampal synapse. , 1993, Science.

[64]  T. Reese Synaptic vesicle exocytosis. , 1981, JAMA.

[65]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[66]  P. Salinas,et al.  Dishevelled-1 Regulates Microtubule Stability : A New Function Mediated by Glycogen Synthase Kinase-3 b , 2000 .