Chaotic light at mid-infrared wavelength

The onset of nonlinear dynamics and chaos is evidenced in a mid-infrared distributed feedback quantum cascade laser both in the temporal and frequency domains. As opposed to the commonly observed route to chaos in semiconductor lasers, which involves undamping of the laser relaxation oscillations, quantum cascade lasers first exhibit regular self-pulsation at the external cavity frequency before entering into a chaotic low-frequency fluctuation regime. The bifurcation sequence, similar to that already observed in class A gas lasers under optical feedback, results from the fast carrier relaxation dynamics occurring in quantum cascade lasers, as confirmed by numerical simulations. Such chaotic behavior can impact various practical applications including spectroscopy, which requires stable single-mode operation. It also allows the development of novel mid-infrared high-power chaotic light sources, thus enabling secure free-space high bit-rate optical communications based on chaos synchronization.

[1]  K.D. LaViolette The impact of Rayleigh backscatter induced noise on QPSK transmission with Fabry-Perot lasers , 1996, IEEE Photonics Technology Letters.

[2]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[3]  C. Sirtori,et al.  Dynamic Modeling of Terahertz Quantum Cascade Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Mattias Beck,et al.  Free-space optical data link using Peltier-cooled quantum cascade laser , 2001 .

[5]  A. Tredicucci,et al.  High power quantum cascade lasers , 1998, Conference Digest. ISLC 1998 NARA. 1998 IEEE 16th International Semiconductor Laser Conference (Cat. No. 98CH361130).

[6]  Gregg M. Gallatin,et al.  Nonlinear laser dynamics : from quantum dots to cryptography , 2011 .

[7]  Peter Friedli,et al.  Four-wave mixing in a quantum cascade laser amplifier , 2013 .

[8]  Cristina Masoller,et al.  Fast pulsing dynamics of a vertical-cavity surface-emitting laser operating in the low-frequency fluctuation regime , 2003 .

[9]  Daan Lenstra,et al.  Sisyphus effect in semiconductor lasers with optical feedback , 1995 .

[10]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[11]  I Fischer,et al.  Statistical properties of low-frequency fluctuations during single-mode operation in distributed-feedback lasers: experiments and modeling. , 1999, Optics letters.

[12]  Manijeh Razeghi,et al.  High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers , 2004 .

[13]  Erich Gornik,et al.  Quantum Cascade Lasers , 2003 .

[14]  M. K. Haldar,et al.  A simplified analysis of direct intensity modulation of quantum cascade lasers , 2005, IEEE Journal of Quantum Electronics.

[15]  F. Grillot,et al.  Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3-$\mu\hbox{m}$ InAs–GaAs Quantum-Dot Lasers , 2008, IEEE Journal of Quantum Electronics.

[16]  J. Ricklin,et al.  Free-space laser communications : principles and advances , 2008 .

[17]  Gavrielides,et al.  Lang and Kobayashi phase equation. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[18]  Cho,et al.  High-power directional emission from microlasers with chaotic resonators , 1998, Science.

[19]  Qing Hu,et al.  Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser , 2006 .

[21]  F. Grillot,et al.  On the Effects of an Antireflection Coating Impairment on the Sensitivity to Optical Feedback of AR/HR Semiconductor DFB Lasers , 2009, IEEE Journal of Quantum Electronics.

[22]  L. Brilland,et al.  All-solid all-chalcogenide microstructured optical fiber. , 2013, Optics express.

[23]  Luke F. Lester,et al.  Microwave Characterization and Stabilization of Timing Jitter in a Quantum-Dot Passively Mode-Locked Laser via External Optical Feedback , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  J. V. Collins,et al.  Measurements of the semiconductor laser linewidth broadening factor , 1983 .

[25]  Luke F. Lester,et al.  Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1 . 3-m InAs – GaAs Quantum-Dot Lasers , 2008 .

[26]  Xavier Marcadet,et al.  Room temperature continuous wave metal grating Distributed Feedback Quantum Cascade Lasers , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[27]  M. Carras,et al.  Nonlinear dynamics of quantum cascade lasers with optical feedback , 2015, SPIE OPTO.

[28]  V. Kovanis,et al.  Modulation properties of optically injection-locked quantum cascade lasers. , 2013, Optics letters.

[29]  S Borri,et al.  Direct link of a mid-infrared QCL to a frequency comb by optical injection. , 2012, Optics letters.

[30]  Gerard Wysocki,et al.  High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser. , 2014, Optics express.

[31]  Mathieu Carras,et al.  Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques , 2016 .

[32]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[33]  Guido Giuliani,et al.  Measurement of the linewidth enhancement factor of quantum cascade lasers by the self-mixing technique , 2006, SPIE Photonics Europe.

[34]  T. L. Myers,et al.  Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared. , 2004, Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy.

[35]  Eric Costard,et al.  Modelling of electronic transport in Quantum Well Infrared Photodetectors , 2011 .

[36]  B Kelleher,et al.  Optically injected lasers: the transition from class B to class A lasers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  T. L. Myers,et al.  Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission , 2002 .

[38]  Paul Mandel,et al.  Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  K. Alan Shore,et al.  Physics and applications of laser diode chaos , 2015 .

[40]  Delphine Wolfersberger,et al.  Delay-induced deterministic resonance of chaotic dynamics , 2013 .

[41]  M. Carras,et al.  9.5 dB relative intensity noise reduction in quantum cascade laser by detuned loading , 2013 .

[42]  A. Bismuto,et al.  Injection locking of mid‐infrared quantum cascade laser at 14 GHz, by direct microwave modulation , 2014 .

[43]  A. Bogris,et al.  Intensity Noise Properties of Midinfrared Injection Locked Quantum Cascade Lasers: II. Experiments , 2015, IEEE Journal of Quantum Electronics.

[44]  Jérôme Faist,et al.  External cavity quantum cascade laser , 2010 .

[45]  M Brambilla,et al.  Multimode regimes in quantum cascade lasers with optical feedback. , 2014, Optics express.

[46]  Daniel J. Gauthier,et al.  Statistics of power-dropout events in semiconductor lasers with time-delayed optical feedback , 1997 .

[47]  Jia-Ming Liu,et al.  Chaotic lidar , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Thomas Erneux,et al.  Nonlinear dynamics of an injected quantum cascade laser. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[50]  Rajeev J. Ram,et al.  Current noise and photon noise in quantum cascade lasers , 2002 .

[52]  M. Fraser,et al.  Application of quantum cascade lasers to trace gas analysis , 2008 .

[53]  Rainer Martini,et al.  Quantum cascade laser-based free space optical communications , 2005 .

[54]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[55]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[56]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[57]  M Brambilla,et al.  Intrinsic stability of quantum cascade lasers against optical feedback. , 2013, Optics express.

[58]  Mathieu Carras,et al.  Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers , 2014 .

[59]  F. Cruz,et al.  New far-infrared laser lines from CH/sub 3/OD methanol deuterated isotope , 2004, IEEE Journal of Quantum Electronics.