A tropical approach to secant dimensions

Tropical geometry yields good lower bounds, in terms of certain combinatorial–polyhedral optimisation problems, on the dimensions of secant varieties. The approach is especially successful for toric varieties such as Segre–Veronese embeddings. In particular, it gives an attractive pictorial proof of the theorem of Hirschowitz that all Veronese embeddings of the projective plane except for the quadratic one and the quartic one are non-defective; and indeed, no Segre–Veronese embeddings are known where the tropical lower bound does not give the correct dimension. Short self-contained introductions to secant varieties and the required tropical geometry are included.

[1]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[2]  R. Bieri,et al.  The geometry of the set of characters iduced by valuations. , 1984 .

[3]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[4]  Grigory Mikhalkin Tropical geometry and its applications , 2006 .

[5]  J. Alexander,et al.  La méthode d'Horace éclatée: application à l'interpolation en degré quatre , 1992 .

[6]  J. Alexander Singularités imposables en position générale à une hypersurface projective , 1988 .

[7]  David E. Speyer,et al.  The tropical Grassmannian , 2003, math/0304218.

[8]  A. Geramita,et al.  Higher secant varieties of the Segre varieties , 2005 .

[9]  Willem A. de Graaf,et al.  Secant Dimensions of Minimal Orbits: Computations and Conjectures , 2007, Exp. Math..

[10]  Alessandro Terracini,et al.  Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .

[11]  Marius van der Put,et al.  Rigid analytic geometry and its applications , 2003 .

[12]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[13]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[14]  F. Zak Tangents and Secants of Algebraic Varieties , 1993 .

[15]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[16]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[17]  R. Ehrenborg On Apolarity and Generic Canonical Forms , 1999 .

[18]  J. Draisma,et al.  Higher secant varieties of the minimal adjoint orbit , 2003, math/0312370.

[19]  A. Hirschowitz La Methode d1Horace pour l'Interpolation à Plusieurs Variables , 1985 .

[20]  Douglas Lind,et al.  Non-archimedean amoebas and tropical varieties , 2004, math/0408311.

[21]  N. J. A. Sloane,et al.  Bounds for binary codes of length less than 25 , 1978, IEEE Trans. Inf. Theory.

[22]  Alessandro Gimigliano,et al.  Secant varieties of Grassmann varieties , 2004 .

[23]  Ueber Curven vierter Ordnung. , 1861 .

[24]  Grigory Mikhalkin,et al.  Amoebas of Algebraic Varieties and Tropical Geometry , 2004, math/0403015.

[25]  Seth Sullivant,et al.  Combinatorial secant varieties , 2005 .

[26]  Armand Borel Linear Algebraic Groups , 1991 .

[27]  G. Ottaviani,et al.  On the Alexander–Hirschowitz theorem , 2007, math/0701409.

[28]  A. Geramita,et al.  Segre-Veronese embeddings of P1xP1xP1 and their secant varieties . , 2007 .

[29]  Mike Develin Tropical Secant Varieties of Linear Spaces , 2006, Discret. Comput. Geom..

[30]  Dinesh Manocha,et al.  SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .