A tropical approach to secant dimensions
暂无分享,去创建一个
[1] L. Pachter,et al. Algebraic Statistics for Computational Biology: Preface , 2005 .
[2] R. Bieri,et al. The geometry of the set of characters iduced by valuations. , 1984 .
[3] B. Sturmfels,et al. First steps in tropical geometry , 2003, math/0306366.
[4] Grigory Mikhalkin. Tropical geometry and its applications , 2006 .
[5] J. Alexander,et al. La méthode d'Horace éclatée: application à l'interpolation en degré quatre , 1992 .
[6] J. Alexander. Singularités imposables en position générale à une hypersurface projective , 1988 .
[7] David E. Speyer,et al. The tropical Grassmannian , 2003, math/0304218.
[8] A. Geramita,et al. Higher secant varieties of the Segre varieties , 2005 .
[9] Willem A. de Graaf,et al. Secant Dimensions of Minimal Orbits: Computations and Conjectures , 2007, Exp. Math..
[10] Alessandro Terracini,et al. Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .
[11] Marius van der Put,et al. Rigid analytic geometry and its applications , 2003 .
[12] C. D. Boor,et al. Polynomial interpolation in several variables , 1994 .
[13] Tomas Sauer,et al. Polynomial interpolation in several variables , 2000, Adv. Comput. Math..
[14] F. Zak. Tangents and Secants of Algebraic Varieties , 1993 .
[15] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[16] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[17] R. Ehrenborg. On Apolarity and Generic Canonical Forms , 1999 .
[18] J. Draisma,et al. Higher secant varieties of the minimal adjoint orbit , 2003, math/0312370.
[19] A. Hirschowitz. La Methode d1Horace pour l'Interpolation à Plusieurs Variables , 1985 .
[20] Douglas Lind,et al. Non-archimedean amoebas and tropical varieties , 2004, math/0408311.
[21] N. J. A. Sloane,et al. Bounds for binary codes of length less than 25 , 1978, IEEE Trans. Inf. Theory.
[22] Alessandro Gimigliano,et al. Secant varieties of Grassmann varieties , 2004 .
[23] Ueber Curven vierter Ordnung. , 1861 .
[24] Grigory Mikhalkin,et al. Amoebas of Algebraic Varieties and Tropical Geometry , 2004, math/0403015.
[25] Seth Sullivant,et al. Combinatorial secant varieties , 2005 .
[26] Armand Borel. Linear Algebraic Groups , 1991 .
[27] G. Ottaviani,et al. On the Alexander–Hirschowitz theorem , 2007, math/0701409.
[28] A. Geramita,et al. Segre-Veronese embeddings of P1xP1xP1 and their secant varieties . , 2007 .
[29] Mike Develin. Tropical Secant Varieties of Linear Spaces , 2006, Discret. Comput. Geom..
[30] Dinesh Manocha,et al. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .