Hoxa2 Selects Barrelette Neuron Identity and Connectivity in the Mouse Somatosensory Brainstem.

Mouse whiskers are somatotopically mapped in brainstem trigeminal nuclei as neuronal modules known as barrelettes. Whisker-related afferents form barrelettes in ventral principal sensory (vPrV) nucleus, whereas mandibular input targets dorsal PrV (dPrV). How barrelette neuron identity and circuitry is established is poorly understood. We found that ectopic Hoxa2 expression in dPrV neurons is sufficient to attract whisker-related afferents, induce asymmetrical dendrite arbors, and allow ectopic barrelette map formation. Moreover, the thalamic area forming whisker-related barreloids is prenatally targeted by both vPrV and dPrV axons followed by perinatal large-scale pruning of dPrV axons and refinement of vPrV barrelette input. Ectopic Hoxa2 expression allows topographically directed targeting and refinement of dPrV axons with vPrV axons into a single whisker-related barreloid map. Thus, a single HOX transcription factor is sufficient to switch dPrV into a vPrV barrelette neuron program and coordinate input-output topographic connectivity of a dermatome-specific circuit module.

[1]  P. Arlotta,et al.  Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo , 2013, Nature Cell Biology.

[2]  Kevin T. Beier,et al.  Conditional expression of the TVA receptor allows clonal analysis of descendents from Cre-expressing progenitor cells. , 2011, Developmental biology.

[3]  H. Loos Barreloids in mouse somatosensory thalamus , 1976, Neuroscience Letters.

[4]  P. Angrand,et al.  Targeted insertion results in a Rhombomere 2‐specific Hoxa2 knockdown and ectopic activation of Hoxa1 expression , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[5]  J. Haigh,et al.  Opposing Roles for Hoxa2 and Hoxb2 in Hindbrain Oligodendrocyte Patterning , 2012, The Journal of Neuroscience.

[6]  Fumitaka Osakada,et al.  Design and generation of recombinant rabies virus vectors , 2013, Nature Protocols.

[7]  A. Dierich,et al.  A Hoxa2 knockin allele that expresses EGFP upon conditional Cre‐mediated recombination , 2002, Genesis.

[8]  Masaharu Ogawa,et al.  BTBD3 Controls Dendrite Orientation Toward Active Axons in Mammalian Neocortex , 2013, Science.

[9]  B. Cragg,et al.  The peripheral and central changes resulting from cutting or crushing the afferent nerve supply to the whiskers , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  James H. Marshel,et al.  New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. , 2011, Neuron.

[11]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[12]  Philippe Soriano Generalized lacZ expression with the ROSA26 Cre reporter strain , 1999, Nature Genetics.

[13]  H. van der Loos,et al.  Barreloids in mouse somatosensory thalamus. , 1976, Neuroscience letters.

[14]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[15]  J. Dasen,et al.  Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization , 2013, Neuron.

[16]  M. Jacquin,et al.  Formation of Whisker-Related Principal Sensory Nucleus-Based Lemniscal Pathway Requires a Paired Homeodomain Transcription Factor, Drg11 , 2003, The Journal of Neuroscience.

[17]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[18]  D. Reinberg,et al.  The Polycomb complex PRC2 and its mark in life , 2011, Nature.

[19]  G. Rousseau,et al.  Retrograde BMP Signaling Regulates Trigeminal Sensory Neuron Identities and the Formation of Precise Face Maps , 2007, Neuron.

[20]  B. Ohlsson-Wilhelm,et al.  Long-Distance Three-Color Neuronal Tracing in Fixed Tissue Using NeuroVue Dyes , 2007, Immunological investigations.

[21]  S. Orkin,et al.  PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos , 2008, Nature Genetics.

[22]  Yasunori Murakami,et al.  Mapping the face in the somatosensory brainstem , 2010, Nature Reviews Neuroscience.

[23]  Thomas A. Woolsey,et al.  Cytoarchitectonic correlates of the vibrissae in the medullary trigeminal complex of the mouse , 1984, Brain Research.

[24]  J. Dasen,et al.  Polycomb repressive complex 1 activities determine the columnar organization of motor neurons. , 2012, Genes & development.

[25]  D. Saur,et al.  A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors , 2008, Proceedings of the National Academy of Sciences.

[26]  D. O'Leary,et al.  Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems , 1994, Current Opinion in Neurobiology.

[27]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[28]  P. Gaspar,et al.  Development and critical period plasticity of the barrel cortex , 2012, The European journal of neuroscience.

[29]  C. Lüscher,et al.  In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons , 2013, Nature Neuroscience.

[30]  D. Jabaudon,et al.  Patterning of pre‐thalamic somatosensory pathways , 2012, The European journal of neuroscience.

[31]  Y. Tabata,et al.  Promoted growth of murine hair follicles through controlled release of basic fibroblast growth factor. , 2002, Tissue engineering.

[32]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[33]  E. Welker,et al.  Variation in pattern of mystacial vibrissae in mice. A quantitative study of ICR stock and several inbred strains. , 1984, The Journal of heredity.

[34]  F. Rijli,et al.  Hoxa2- and Rhombomere-Dependent Development of the Mouse Facial Somatosensory Map , 2006, Science.

[35]  T. Jessell,et al.  Hox networks and the origins of motor neuron diversity. , 2009, Current topics in developmental biology.

[36]  F. Lo,et al.  Behavioral/systems/cognitive Nmda Receptor-dependent Regulation of Axonal and Dendritic Branching , 2022 .

[37]  M. Miyata,et al.  Large-Scale Somatotopic Refinement via Functional Synapse Elimination in the Sensory Thalamus of Developing Mice , 2014, The Journal of Neuroscience.

[38]  Antoine H. F. M. Peters,et al.  Ezh2 Orchestrates Topographic Migration and Connectivity of Mouse Precerebellar Neurons , 2013, Science.

[39]  S. Schneider-Maunoury,et al.  Expression pattern of a Krox‐20/Cre knock‐in allele in the developing hindbrain, bones, and peripheral nervous system , 2000, Genesis.

[40]  Xiaoping Zhou,et al.  Proper formation of whisker barrelettes requires periphery-derived Smad4-dependent TGF-β signaling , 2011, Proceedings of the National Academy of Sciences.

[41]  T. Jessell,et al.  Patterns of Spinal Sensory-Motor Connectivity Prescribed by a Dorsoventral Positional Template , 2011, Cell.

[42]  M. Frasch,et al.  Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. , 1995, Development.