Micro- and nano-fabricated implantable drug-delivery systems.

Implantable drug-delivery systems provide new means for achieving therapeutic drug concentrations over entire treatment durations in order to optimize drug action. This article focuses on new drug administration modalities achieved using implantable drug-delivery systems that are enabled by micro- and nano-fabrication technologies, and microfluidics. Recent advances in drug administration technologies are discussed and remaining challenges are highlighted.

[1]  E. Meng,et al.  High-Efficiency MEMS Electrochemical Actuators and Electrochemical Impedance Spectroscopy Characterization , 2012, Journal of Microelectromechanical Systems.

[2]  Yogesh B Gianchandani,et al.  Transdermal power transfer for recharging implanted drug delivery devices via the refill port , 2010, Biomedical microdevices.

[3]  Chiming Wei,et al.  Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[4]  M. Cima,et al.  A controlled-release microchip , 1999, Nature.

[5]  G. Stemme,et al.  A Thermally Responsive PDMS Composite and Its Microfluidic Applications , 2007, Journal of Microelectromechanical Systems.

[6]  Ok Chan Jeong,et al.  Fabrication of a thermopneumatic microactuator with a corrugated p+ silicon diaphragm , 2000 .

[7]  T. Desai,et al.  Characterization of Nanoporous Membranes for Immunoisolation: Diffusion Properties and Tissue Effects , 2002 .

[8]  Nicolas André,et al.  Metronomic chemotherapy: new rationale for new directions , 2010, Nature Reviews Clinical Oncology.

[9]  John T Santini,et al.  Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device , 2006, Nature Biotechnology.

[10]  N M Elman,et al.  An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care , 2009, Biomedical microdevices.

[11]  M. Humayun,et al.  The effects of intravitreous bevacizumab on retinal neovascular membrane and normal capillaries in rabbits. , 2007, Investigative ophthalmology & visual science.

[12]  Guoguang Su,et al.  Drug Particle Delivery Investigation Through a Valveless Micropump , 2010, Journal of Microelectromechanical Systems.

[13]  Jun Xie,et al.  Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion , 2007 .

[14]  M. Madou Fundamentals of microfabrication and nanotechnology , 2012 .

[15]  A. Pisano,et al.  Water-powered, osmotic microactuator , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[16]  Jochen Maas,et al.  An integrated early formulation strategy--from hit evaluation to preclinical candidate profiling. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  H. Kahn,et al.  Thin-film shape-memory alloy actuated micropumps , 1998 .

[18]  Po-Ying Li,et al.  An implantable MEMS micropump system for drug delivery in small animals , 2012, Biomedical microdevices.

[19]  E. Meng,et al.  High efficiency wireless electrochemical actuators: Design, fabrication and characterization by electrochemical impedance spectroscopy , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[20]  M. Ferrari,et al.  DRUG DELIVERY SYSTEMS , 2006 .

[21]  Roland Zengerle,et al.  An intra-cerebral drug delivery system for freely moving animals , 2012, Biomedical microdevices.

[22]  D. Maillefer,et al.  A high-performance silicon micropump for an implantable drug delivery system , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[23]  Nan-Chyuan Tsai,et al.  Review of MEMS-based drug delivery and dosing systems , 2007 .

[24]  Il-Joo Cho,et al.  A surface-tension driven micropump for low-voltage and low-power operations , 2002 .

[25]  D. Fisher,et al.  Pharmacokinetics of an Implanted Osmotic Pump Delivering Sufentanil for the Treatment of Chronic Pain , 2003, Anesthesiology.

[26]  Kan Junwu,et al.  Design and test of a high-performance piezoelectric micropump for drug delivery , 2005 .

[27]  P. Turner,et al.  Administration of substances to laboratory animals: equipment considerations, vehicle selection, and solute preparation. , 2011, Journal of the American Association for Laboratory Animal Science : JAALAS.

[28]  M. Ferrari,et al.  Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications , 1999 .

[29]  Tina K. Givrad,et al.  A Parylene MEMS Electrothermal Valve , 2009, Journal of Microelectromechanical Systems.

[30]  E. Meng,et al.  Rapid and repeated bolus drug delivery enabled by high efficiency electrochemical bellows actuators , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[31]  Peter Woias,et al.  Micropumps—past, progress and future prospects , 2005 .

[32]  David Erickson,et al.  A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release , 2009, Biomedical microdevices.

[33]  Bruce C. Towe,et al.  A thermopneumatic dispensing micropump , 2004 .

[34]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[35]  John T Santini,et al.  Electrothermally activated microchips for implantable drug delivery and biosensing. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[36]  Masayoshi Esashi,et al.  Normally close microvalve and micropump fabricated on a silicon wafer , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[37]  Robert Langer,et al.  First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip , 2012, Science Translational Medicine.

[38]  Yu Zhou,et al.  Current micropump technologies and their biomedical applications , 2009 .

[39]  Y. Gianchandani,et al.  A Multidrug Delivery System Using a Piezoelectrically Actuated Silicon Valve Manifold With Embedded Sensors , 2011, Journal of Microelectromechanical Systems.

[40]  Mir Majid Teymoori,et al.  Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications , 2005 .

[41]  Ramana M. Pidaparti,et al.  Transport of drug particles in micropumps through novel actuation , 2010 .

[42]  E. Meng,et al.  A Parylene Bellows Electrochemical Actuator , 2010, Journal of Microelectromechanical Systems.

[43]  M. J. Mescher,et al.  Piezoelectric lead-zirconate-titanate actuator films for microelectromechanical systems applications , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.

[44]  P. Woias,et al.  An Implantable Active Microport Based on a Self-Priming High-Performance Two-Stage Micropump , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[45]  X. Zha,et al.  Study on a piezoelectric micropump for the controlled drug delivery system , 2007 .

[46]  M. Chiao,et al.  On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. , 2011, Lab on a chip.

[47]  Mark S Humayun,et al.  Mini Drug Pump for Ophthalmic Use , 2009, Current eye research.

[48]  Robert Langer,et al.  Multi-pulse drug delivery from a resorbable polymeric microchip device , 2003, Nature materials.

[49]  F. Goldschmidtboeing,et al.  Design of an implantable active microport system for patient specific drug release , 2006, Biomedical microdevices.

[50]  E. Meng,et al.  A low power, on demand electrothermal valve for wireless drug delivery applications. , 2010, Lab on a chip.

[51]  R. Rosenquist,et al.  Long-term outcomes during treatment of chronic pain with intrathecal clonidine or clonidine/opioid combinations. , 2003, Journal of pain and symptom management.

[52]  Kenichi Takahata,et al.  Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves , 2011, Biomedical microdevices.

[53]  T. Desai,et al.  Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[54]  Masayoshi Esashi,et al.  Normally closed microvalve and mircopump fabricated on a silicon wafer , 1989 .

[55]  P. Turner,et al.  Administration of substances to laboratory animals: routes of administration and factors to consider. , 2011, Journal of the American Association for Laboratory Animal Science : JAALAS.

[56]  N. Rainov,et al.  Long-term intrathecal infusion of drug combinations for chronic back and leg pain. , 2001, Journal of pain and symptom management.

[57]  Fritz B Prinz,et al.  Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[58]  Y. Ahn,et al.  Disposable thermo-pneumatic micropump for bio lab-on-a-chip application , 2009 .

[59]  L. Lin,et al.  A water-powered micro drug delivery system , 2004, Journal of Microelectromechanical Systems.

[60]  T. Bourouina,et al.  Design and simulation of an electrostatic micropump for drug-delivery applications , 1997 .

[61]  Jun Xie,et al.  Surface micromachined electrostatically actuated micro peristaltic pump. , 2004, Lab on a chip.

[62]  Babak Ziaie,et al.  A Skin-Contact-Actuated Micropump for Transdermal Drug Delivery , 2011, IEEE Transactions on Biomedical Engineering.

[63]  Yuhuan Li,et al.  Miniature osmotic actuators for controlled maxillofacial distraction osteogenesis , 2010 .

[64]  Michael J Cima,et al.  Microchip technology in drug delivery , 2000, Annals of medicine.

[65]  M. Humayun,et al.  Effect of multiple injections of small divided doses vs single injection of intravitreal bevacizumab on retinal neovascular model in rabbits , 2009, Graefe's Archive for Clinical and Experimental Ophthalmology.

[66]  M. Jamal,et al.  Self-folding micropatterned polymeric containers , 2011, Biomedical microdevices.

[67]  Seshadri Neervannan,et al.  Preclinical formulations for discovery and toxicology: physicochemical challenges , 2006, Expert opinion on drug metabolism & toxicology.

[68]  Robert Langer,et al.  Molecular release from a polymeric microreservoir device: Influence of chemistry, polymer swelling, and loading on device performance. , 2004, Journal of biomedical materials research. Part A.

[69]  M. Ferrari,et al.  Nanopore Technology for Biomedical Applications , 1999 .

[70]  Dennis L. Polla,et al.  Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology , 2001 .

[71]  Dominiek Reynaerts,et al.  An implantable drug-delivery system based on shape memory alloy micro-actuation , 1997 .

[72]  Po-Ying Li,et al.  Implantable MEMS drug delivery device for cancer radiation reduction , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[73]  Allan Thomas Evans,et al.  A low power, microvalve regulated architecture for drug delivery systems , 2010, Biomedical microdevices.

[74]  Po-Ying Li,et al.  An electrochemical intraocular drug delivery device , 2008, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[75]  Stephanie W. Watts,et al.  Drug Delivery: Enabling Technology for Drug Discovery and Development. iPRECIO® Micro Infusion Pump: Programmable, Refillable, and Implantable , 2011, Front. Pharmacol..