A Survey of Prediction Using Social Media

Social media comprises interactive applications and platforms for creating, sharing and exchange of user-generated contents. The past ten years have brought huge growth in social media, especially online social networking services, and it is changing our ways to organize and communicate. It aggregates opinions and feelings of diverse groups of people at low cost. Mining the attributes and contents of social media gives us an opportunity to discover social structure characteristics, analyze action patterns qualitatively and quantitatively, and sometimes the ability to predict future human related events. In this paper, we firstly discuss the realms which can be predicted with current social media, then overview available predictors and techniques of prediction, and finally discuss challenges and possible future directions.

[1]  Duncan J. Watts,et al.  Six Degrees: The Science of a Connected Age , 2003 .

[2]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[3]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.

[4]  Tad Hogg,et al.  Using a model of social dynamics to predict popularity of news , 2010, WWW '10.

[5]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[6]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[7]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[8]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[9]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009 .

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  PATTERN RECOGNITION USING NEURAL NETWORKS , 2008 .

[12]  Gilad Mishne,et al.  Predicting Movie Sales from Blogger Sentiment , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[13]  Donal E. Carlston,et al.  Negativity and extremity biases in impression formation: A review of explanations. , 1989 .

[14]  Cheol Park,et al.  Information direction, website reputation and eWOM effect: A moderating role of product type , 2009 .

[15]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[16]  Liviu Lica,et al.  Predicting Product Performance with Social Media , 2011 .

[17]  J. Simonoff,et al.  Predicting Movie Grosses: Winners and Losers, Blockbusters and Sleepers , 2000 .

[18]  F. Heider The psychology of interpersonal relations , 1958 .

[19]  Munmun De Choudhury,et al.  Can blog communication dynamics be correlated with stock market activity? , 2008, Hypertext.

[20]  Bruno S. Silvestre,et al.  Social Media? Get Serious! Understanding the Functional Building Blocks of Social Media , 2011 .

[21]  Brendan T. O'Connor,et al.  From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series , 2010, ICWSM.

[22]  Seungyeop Han,et al.  Analysis of topological characteristics of huge online social networking services , 2007, WWW '07.

[23]  Fang Wu,et al.  Novelty and collective attention , 2007, Proceedings of the National Academy of Sciences.

[24]  Ralf Herbrich,et al.  Predicting Information Spreading in Twitter , 2010 .

[25]  Werner Antweiler,et al.  Is All that Talk Just Noise? The Information Content of Internet Stock Message Boards , 2001 .

[26]  Bernardo A. Huberman,et al.  Predicting the Future with Social Media , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[27]  Vicenç Gómez,et al.  Statistical analysis of the social network and discussion threads in slashdot , 2008, WWW.

[28]  Subhash Kak Better Web Searches and Prediction with Instantaneously Trained Neural Networks , 1999 .

[29]  H. Jansen,et al.  Pundits, Ideologues, and the Ranters: The British Columbia Election Online , 2006 .

[30]  Kristina Lerman,et al.  Analysis of social voting patterns on digg , 2008, WOSN '08.

[31]  P. Lazarsfeld,et al.  Personal Influence: The Part Played by People in the Flow of Mass Communications , 1956 .

[32]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[33]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[34]  Subhash C. Kak,et al.  A class of instantaneously trained neural networks , 2002, Inf. Sci..

[35]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[36]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009, J. Assoc. Inf. Sci. Technol..

[37]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[38]  P. Gloor,et al.  Predicting Stock Market Indicators Through Twitter “I hope it is not as bad as I fear” , 2011 .

[39]  Steven B. Andrews,et al.  Structural Holes: The Social Structure of Competition , 1995, The SAGE Encyclopedia of Research Design.

[40]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[41]  Ramesh Sharda,et al.  Predicting box-office success of motion pictures with neural networks , 2006 .

[42]  Subhash Kak,et al.  The Three Languages of the Brain: Quantum, Reorganizational, and Associative , 1996 .

[43]  JungherrAndreas,et al.  Why the Pirate Party Won the German Election of 2009 or The Trouble With Predictions , 2012 .

[44]  E. Fama,et al.  Efficient Capital Markets : II , 2007 .

[45]  Panagiotis Takis Metaxas,et al.  How (Not) to Predict Elections , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[46]  Matthew Richardson,et al.  Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.

[47]  Bin Gu,et al.  Do online reviews matter? - An empirical investigation of panel data , 2008, Decis. Support Syst..

[48]  Pamela J. Hinds,et al.  Structures that work: social structure, work structure and coordination ease in geographically distributed teams , 2006, CSCW '06.

[49]  Gregoris Mentzas,et al.  Using Social Media to Predict Future Events with Agent-Based Markets , 2010, IEEE Intelligent Systems.

[50]  Andrew J. Cowell,et al.  Social media and social reality , 2010, 2010 IEEE International Conference on Intelligence and Security Informatics.

[51]  E. Anderson Customer Satisfaction and Word of Mouth , 1998 .

[52]  Charles K. Nicholas,et al.  Topological analysis of an online social network for older adults , 2008, SSM '08.

[53]  Steven Skiena,et al.  Improving Movie Gross Prediction through News Analysis , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[54]  P. Gloor,et al.  Predicting Asset Value through Twitter Buzz , 2012 .

[55]  Lada A. Adamic The Small World Web , 1999, ECDL.

[56]  A. Kaplan,et al.  Users of the world, unite! The challenges and opportunities of Social Media , 2010 .

[57]  Isabell M. Welpe,et al.  Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment , 2010, ICWSM.

[58]  Christine B. Williams,et al.  What is a Social Network Worth? Facebook and Vote Share in the 2008 Presidential Primaries , 2008 .

[59]  D. Watts The “New” Science of Networks , 2004 .

[60]  S. Bornholdt,et al.  Scale-free topology of e-mail networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Ramanathan V. Guha,et al.  The predictive power of online chatter , 2005, KDD '05.

[62]  Daniela E. Damian,et al.  Predicting build failures using social network analysis on developer communication , 2009, 2009 IEEE 31st International Conference on Software Engineering.

[63]  Jure Leskovec,et al.  Planetary-scale views on a large instant-messaging network , 2008, WWW.

[64]  Rajesh Parekh,et al.  Predicting product adoption in large-scale social networks , 2010, CIKM.

[65]  Panagiotis Takis Metaxas,et al.  Limits of Electoral Predictions Using Twitter , 2011, ICWSM.

[66]  L. V. Williams,et al.  Prediction Markets , 2003 .

[67]  Subhash Kak,et al.  New algorithms for training feedforward neural networks , 1994, Pattern Recognit. Lett..

[68]  Bora Caglayan,et al.  Defect prediction using social network analysis on issue repositories , 2011, ICSSP '11.

[69]  Eric Gilbert,et al.  Widespread Worry and the Stock Market , 2010, ICWSM.

[70]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[71]  Bonnie A. Nardi,et al.  Why we blog , 2004, CACM.

[72]  Kon Shing Kenneth Chung,et al.  Actor centrality correlates to project based coordination , 2006, CSCW '06.

[73]  Subhash C. Kak,et al.  Data Mining Using Surface and Deep Agents Based on Neural Networks , 2010, AMCIS.

[74]  Wg.Cdr. Pongphet Congpuong How to lie With Statistics , 2013 .

[75]  Subhash Kak,et al.  On training feedforward neural networks , 1993 .

[76]  Panos Constantopoulos,et al.  Research and Advanced Technology for Digital Libraries , 2001, Lecture Notes in Computer Science.

[77]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[78]  Fang Wu,et al.  Social Networks that Matter: Twitter Under the Microscope , 2008, First Monday.

[79]  Brian D. Loader,et al.  Social Movements and New Media , 2008 .