Quantum Separation of Local Search and Fixed Point Computation

We give a lower bound of i¾?(n(di¾? 1)/2) on the quantum query complexity for finding a fixed point of a discrete Brouwer function over grid [n]d. Our lower bound is nearly tight, as Grover Search can be used to find a fixed point with O(nd/2) quantum queries. Our result establishes a nearly tight bound for the computation of d-dimensional approximate Brouwer fixed points defined by Scarf and by Hirsch, Papadimitriou, and Vavasis. It can be extended to the quantum model for Sperner's Lemma in any dimensions: The quantum query complexity of finding a panchromatic cell in a Sperner coloring of a triangulation of a d-dimensional simplex with ndcells is i¾?(n(di¾? 1)/2). For d= 2, this result improves the bound of i¾?(n1/4) of Friedl, Ivanyos, Santha, and Verhoeven. More significantly, our result provides a quantum separation of local search and fixed point computation over [n]d, for di¾? 4. Aaronson's local search algorithm for grid [n]d, using Aldous Sampling and Grover Search, makes O(nd/3) quantum queries. Thus, the quantum query model over [n]dfor di¾? 4 strictly separates these two fundamental search problems.

[1]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[2]  Scott Aaronson,et al.  Lower bounds for local search by quantum arguments , 2003, STOC '04.

[3]  Yu. B. Zudin,et al.  Mat hemat ical Engineering , 2003 .

[4]  H. Scarf The computation of equilibrium prices , 1973 .

[5]  Xi Chen,et al.  On algorithms for discrete and approximate brouwer fixed points , 2005, STOC '05.

[6]  Miklos Santha,et al.  Quantum and classical query complexities of local search are polynomially related , 2004, STOC.

[7]  Christos H. Papadimitriou,et al.  Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[8]  Miklos Santha,et al.  On the Black-Box Complexity of Sperner's Lemma , 2005, FCT.

[9]  Shengyu Zhang New upper and lower bounds for randomized and quantum local search , 2006, STOC '06.

[10]  S. Teng,et al.  Paths Beyond Local Search: A Tight Bound for Randomized Fixed-Point Computation , 2007, FOCS 2007.

[11]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[12]  Andris Ambainis,et al.  Polynomial degree vs. quantum query complexity , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[13]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Herbert E. Scarf,et al.  The Approximation of Fixed Points of a Continuous Mapping , 1967 .

[15]  Xiaotie Deng,et al.  On the complexity of price equilibria , 2003, J. Comput. Syst. Sci..

[16]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[17]  Shengyu Zhang,et al.  On the power of Ambainis lower bounds , 2005, Theor. Comput. Sci..

[18]  C. Papadimitriou On Inefficient Proofs of Existence and Complexity Classes , 1992 .

[19]  Andrew Chi-Chih Yao,et al.  On the Quantum Query Complexity of Local Search in Two and Three Dimensions , 2006, FOCS.

[20]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[21]  D. Aldous Minimization Algorithms and Random Walk on the $d$-Cube , 1983 .