Nonlinear increase in silicon epitaxial growth rate in a SiHCl3H2 system under atmospheric pressure

Abstract The growth rate of Si epitaxial thin film at 1073–1398 K in a SiHCl 3 H 2 system under atmospheric pressure is studied theoretically and experimentally for a horizontal single-wafer reactor using the three-dimensional transport and epitaxy model which can account for both transport phenomena in an entire reactor and surface chemical reactions. The nonlinear increase in silicon epitaxial growth rate with SiHCl 3 concentration at the inlet of the reactor is discussed by investigating the changes in the transport of the chemical species to the substrate surface and the species saturation at the surface by chemisorption which limits the surface chemical reaction rate. An indicator for the rate-limiting factor for transport and reaction is discussed to investigate the saturation of the epitaxial growth rate and is shown to be useful for quantitatively describing the rate-limiting process.

[1]  Hitoshi Habuka,et al.  Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3H2 system under atmospheric pressure , 1996 .

[2]  J. Jasinski,et al.  Absolute rate constants for the reaction of silylene with hydrogen, silane, and disilane , 1988 .

[3]  J. Jasinski,et al.  Absolute rate constants for the reaction of SiH with hydrogen, deuterium and silane , 1989 .

[4]  W. H. Weinberg,et al.  Monte Carlo simulations of temperature programmed desorption spectra , 1994 .

[5]  C. Kleijn,et al.  A STUDY OF 2- AND 3-D TRANSPORT PHENOMENA IN HORIZONTAL CHEMICAL VAPOR DEPOSITION REACTORS , 1991 .

[6]  Gerold W. Neudeck,et al.  Mathematical Modeling of Epitaxial Silicon Growth in Pancake Chemical Vapor Deposition Reactors , 1991 .

[7]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[8]  K. Okuyama,et al.  Numerical Evaluation of Silicon-Thin Film Growth from SiHCl3-H2 Gas Mixture in a Horizontal Chemical Vapor Deposition Reactor. , 1994 .

[9]  R. A. Aziz,et al.  Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s)* for the Lennard‐Jones (12–6) Potential , 1972 .

[10]  Norbert Adolph Lange,et al.  Handbook of chemistry , 1944 .

[11]  J. Newman,et al.  Silicon Deposition on a Rotating Disk , 1980 .

[12]  G. Thodos,et al.  Lennard‐Jones force constants from viscosity data: Their relationship to critical properties , 1962 .

[13]  B. A. Scott,et al.  The role of surface reactions in monosilane pyrolysis , 1988 .

[14]  Scott,et al.  Interaction of Si2H6 with a Si(111)-77 surface. , 1989, Physical review. B, Condensed matter.

[15]  Michael E. Coltrin,et al.  A theoretical study of the heats of formation of silicon hydride (SiHn), silicon chloride (SiCln), and silicon hydride chloride (SiHnClm) compounds , 1985 .

[16]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[17]  R. Pollard,et al.  An approach for modeling surface reaction kinetics in chemical vapor deposition processes , 1995 .

[18]  Bernard S. Meyerson,et al.  Silane pyrolysis rates for the modeling of chemical vapor deposition , 1987 .

[19]  Robert J. Kee,et al.  A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor , 1984 .

[20]  H. Bernhard Schlegel,et al.  An ab initio MO study of the thermal decomposition of chlorinated monosilanes, SiH4-nCln (n = 0-4) , 1993 .

[21]  W. H. Weinberg,et al.  Theoretical and simulation studies of recombinative temperature programmed desorption , 1995 .

[22]  Michael E. Coltrin,et al.  Theoretical study of the heats of formation of Si2Hn (n = 0-6) compounds and trisilane , 1986 .

[23]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[24]  W. H. Weinberg,et al.  Kinetics of coverage‐dependent adsorption , 1995 .

[25]  Robert J. Kee,et al.  A Mathematical Model of Silicon Chemical Vapor Deposition Further Refinements and the Effects of Thermal Diffusion , 1986 .

[26]  S. E. Bradshaw The Kinetics of Epitaxial Silicon Deposition by the Hydrogen Reduction of Chlorosilanes , 1966 .

[27]  B. A. Scott,et al.  Summary Abstract: Chemisorption of silanes on the Si(111)‐(7×7) surface , 1987 .

[28]  Robert J. Kee,et al.  A Mathematical Model of the Fluid Mechanics and Gas‐Phase Chemistry in a Rotating Disk Chemical Vapor Deposition Reactor , 1989 .

[29]  W. Holstein Thermal Diffusion in Metal‐Organic Chemical Vapor Deposition , 1988 .

[30]  U. Narusawa Si Deposition from Chlorosilanes I . Deposition Modeling , 1994 .

[31]  A. Kersch,et al.  A Gas‐Phase and Surface Kinetics Model for Silicon Epitaxial Growth with SiH2Cl2 in an RTCVD Reactor , 1995 .