Generation of thermofield double states and critical ground states with a quantum computer

Significance Our experiment prepares two types of nontrivial quantum states on a trapped ion quantum computer: the thermofield double state of the transverse-field Ising model at arbitrary temperature and the quantum critical state of the zero-temperature model. We use techniques motivated by the quantum approximate optimization algorithm, and we implement a hybrid quantum–classical optimization loop to prepare the quantum critical state. Our results pave the way for exploring strongly correlated models at finite temperature and teleportation protocols inspired by black hole physics. Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results.

[1]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[2]  Brian Swingle,et al.  Product spectrum ansatz and the simplicity of thermal states , 2018, Physical Review A.

[3]  Jingxiang Wu,et al.  Variational Thermal Quantum Simulation via Thermofield Double States. , 2018, Physical review letters.

[4]  D. Hofman,et al.  How to build the thermofield double state , 2018, Journal of High Energy Physics.

[5]  V. Ravindran,et al.  Second order splitting functions and infrared safe cross sections in N$$ \mathcal{N} $$ = 4 SYM theory , 2018, Journal of High Energy Physics.

[6]  Peter Zoller,et al.  Probing Rényi entanglement entropy via randomized measurements , 2018, Science.

[7]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[8]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[9]  F. Brandão,et al.  For Fixed Control Parameters the Quantum Approximate Optimization Algorithm's Objective Function Value Concentrates for Typical Instances , 2018, 1812.04170.

[10]  Timothy H. Hsieh,et al.  Ultrafast State Preparation via the Quantum Approximate Optimization Algorithm with Long Range Interactions , 2018, 1810.04817.

[11]  Xiao-Liang Qi,et al.  Eternal traversable wormhole , 2018, 1804.00491.

[12]  Norbert M. Linke,et al.  Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer , 2017, Physical Review A.

[13]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[14]  Matthias Troyer,et al.  Entanglement spectroscopy on a quantum computer , 2017, 1707.07658.

[15]  Zhenbin Yang,et al.  Diving into traversable wormholes , 2017, 1704.05333.

[16]  G. Veneziano,et al.  A model for pion-pion scattering in large-N QCD , 2017, 1701.06315.

[17]  Fernando G. S. L. Brandão,et al.  Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States , 2016, Communications in Mathematical Physics.

[18]  Aron C. Wall,et al.  Traversable wormholes via a double trace deformation , 2016, Journal of High Energy Physics.

[19]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[20]  Onur Hosten,et al.  Measurement noise 100 times lower than the quantum-projection limit using entangled atoms , 2016, Nature.

[21]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[22]  C Figgatt,et al.  Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. , 2014, Physical review letters.

[23]  Serge Haroche,et al.  Controlling photons in a box and exploring the quantum to classical boundary , 2013, Angewandte Chemie.

[24]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[25]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[26]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[27]  D. Poulin,et al.  Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. , 2009, Physical review letters.

[28]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[29]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[30]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[31]  J. Maldacena Eternal black holes in anti-de Sitter , 2001, hep-th/0106112.

[32]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[33]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[34]  D. DiVincenzo,et al.  Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.

[35]  S. Sachdev Quantum Phase Transitions , 1999 .

[36]  E. Solano,et al.  DETERMINISTIC BELL STATES AND MEASUREMENT OF THE MOTIONAL STATE OF TWO TRAPPED IONS , 1999, quant-ph/9902004.

[37]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[38]  David J. Gross,et al.  QCD and instantons at finite temperature , 1981 .

[39]  Werner Israel,et al.  Thermo-field dynamics of black holes☆ , 1976 .

[40]  H. Umezawa,et al.  THERMO FIELD DYNAMICS , 1996 .

[41]  Barrington. Moore The Outlook , 1956 .