Concept formation in context

[1]  David D. Lewis,et al.  Learning in Intelligent Information Retrieval , 1991, ML.

[2]  Stephen C. Y. Lu,et al.  CAQ: A machine learning tool for engineering , 1990, Artif. Intell. Eng..

[3]  Ray Bareiss,et al.  Concept Learning and Heuristic Classification in WeakTtheory Domains , 1990, Artif. Intell..

[4]  Thomas D. Wu Efficient Diagnosis of Multiple Disorders Based on a Symptom Clustering Approach , 1990, AAAI.

[5]  Craig A. Knoblock Learning Abstraction Hierarchies for Problem Solving , 1990, AAAI.

[6]  Jerry B. Weinberg,et al.  Search Control, Utility, and Concept Induction , 1990, ML.

[7]  J.-J.J. Chen,et al.  Temporal feature extraction and clustering analysis of electromyographic linear envelopes in gait studies , 1990, IEEE Transactions on Biomedical Engineering.

[8]  Paul O'Rorke,et al.  Theory Formation by Abduction: Initial Results of a Case Study Based on the Chemical Revolution , 1989, ML.

[9]  Pat Langley,et al.  An integrated cognitive architecture for autonomous agents , 1989 .

[10]  Pat Langley,et al.  Improving Efficiency by Learning Intermediate Concepts , 1989, IJCAI.

[11]  James Kelly,et al.  AutoClass: A Bayesian Classification System , 1993, ML.

[12]  Arthur M. Farley,et al.  Plan Abstraction Based on Operator Generalization , 1988, AAAI.

[13]  L. Holder Discovering Substructure in Examples , 1988 .

[14]  Janet L. Kolodner,et al.  Extending Problem Solver Capabilities Through Case-Based Inference , 1987 .

[15]  David Tcheng,et al.  MORE ROBUST CONCEPT LEARNING USING DYNAMICALLY – VARIABLE BIAS , 1987 .

[16]  R. Levinson,et al.  A Self-Organized Knowledge Base for Recall, Design, and Discovery in Organic Chemistry , 1986 .

[17]  Randy Jones,et al.  Generating Predictions to Aid the Scientific Discovery Process , 1986, AAAI.

[18]  Ryszard S. Michalski,et al.  Conceptual Clustering: Inventing Goal-Oriented Classifications of Structured Objects , 1986 .

[19]  King-Sun Fu,et al.  Conceptual Clustering in Knowledge Organization , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Pat Langley,et al.  Learning to search : from weak methods to domain-specific heuristics , 1985 .

[21]  Herbert A. Simon,et al.  EPAM-like Models of Recognition and Learning , 1984, Cogn. Sci..

[22]  Herbert A. Simon,et al.  The Search for Regularity: Four Aspects of Scientific Discovery , 1984 .

[23]  Tom M. Mitchell,et al.  Learning by experimentation: acquiring and refining problem-solving heuristics , 1993 .

[24]  Janet L. Kolodner,et al.  Reconstructive Memory: A Computer Model , 1983, Cogn. Sci..

[25]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[26]  J. Gerard Wolff,et al.  Language acquisition, data compression and generalization , 1982 .

[27]  P. Hopke,et al.  The Pared�n, Mexico, Obsidian Source and Early Formative Exchange , 1978, Science.

[28]  Douglas B. Lenat,et al.  Automated Theory Formation in Mathematics , 1977, IJCAI.

[29]  Steven A. Vere,et al.  Inductive learning of relational productions , 1977, SGAR.

[30]  A. Sigleo Turquoise Mine and Artifact Correlation for Snaketown Site, Arizona , 1975, Science.

[31]  Earl D. Sacerdoti,et al.  Planning in a Hierarchy of Abstraction Spaces , 1974, IJCAI.

[32]  Paul J. Schweitzer,et al.  Problem Decomposition and Data Reorganization by a Clustering Technique , 1972, Oper. Res..