Comprehensive Scaling Analysis of Current Induced Switching in Magnetic Memories Based on In-Plane and Perpendicular Anisotropies

Spin transfer torque based magnetic memories (STT-MRAMs) are leading contender for the replacement of SRAM caches. However, STT-MRAMs suffer from high write current, read/write stability conflicts and other failure mechanisms. In this paper, we present a comprehensive scaling analysis for STT-MRAMs based on in-plane and perpendicular anisotropy magnets in context to different failure mechanisms. Write failures are taken into consideration by the write current, read disturb failures by the critical current and read decision failure by the tunnel magneto-resistance scaling trends. Bit-cells comprising three different device structures-the conventional magnetic tunnel junctions (MTJs), the dual pillar MTJs (DP-MTJs) and the spin-orbit-torque based MTJs (SOT-MTJs) are investigated. We analyze the robustness of the aforementioned devices within the voltage constraints specified by ITRS. We also report predictive analysis results with futuristic material parameters. Through a coupled simulation framework consisting of spin transport and magnetization dynamics, we show that conventional MTJs would require higher voltages at scaled technology nodes. DP-MTJs, within ITRS voltage specifications, show better scalability (with ~ 2.3× larger bit-cell area). SOT-MTJs provide attractive power savings ( ~ 3.4× improvement) at a ~ 1.3× larger bit-cell area. Furthermore, our analysis indicates that among various possible improved material parameters, high interface perpendicular anisotropy shows the most promising way of achieving scalable memory cells at assumed ITRS voltages.

[1]  H. Ohno,et al.  Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction , 2012 .

[2]  M. d’Aquino Nonlinear Magnetization Dynamics in Thin-Films and Nanoparticles , 2005 .

[3]  K. Roy,et al.  Numerical analysis of typical STT-MTJ stacks for 1T-1R memory arrays , 2010, 2010 International Electron Devices Meeting.

[4]  J. Katine,et al.  Low Write-Energy Magnetic Tunnel Junctions for High-Speed Spin-Transfer-Torque MRAM , 2011, IEEE Electron Device Letters.

[5]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[6]  Kaushik Roy,et al.  Layout-aware optimization of stt mrams , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[7]  Xuanyao Fong,et al.  High-Density and Robust STT-MRAM Array Through Device/Circuit/Architecture Interactions , 2015, IEEE Transactions on Nanotechnology.

[8]  Zhaohao Wang,et al.  Spintronics , 2015, ACM J. Emerg. Technol. Comput. Syst..

[9]  Zhaohao Wang,et al.  DFSTT-MRAM: Dual Functional STT-MRAM Cell Structure for Reliability Enhancement and 3-D MLC Functionality , 2014, IEEE Transactions on Magnetics.

[10]  T. Liu,et al.  Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy , 2014, Scientific Reports.

[11]  Yiming Huai,et al.  Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects , 2008 .

[12]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[13]  W. Brown Thermal Fluctuations of a Single‐Domain Particle , 1963 .

[14]  Sachin S. Sapatnekar,et al.  Improving STT-MRAM density through multibit error correction , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[15]  R. P. Robertazzi,et al.  Effect of subvolume excitation and spin-torque efficiency on magnetic switching , 2011 .

[16]  M. Stiles,et al.  Boltzmann test of Slonczewski's theory of spin-transfer torque , 2004, cond-mat/0407569.

[17]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[18]  Wei Lu,et al.  Magnetization characteristic of ferromagnetic thin strip by measuring anisotropic magnetoresistance and ferromagnetic resonance , 2014 .

[19]  Yimei Zhu,et al.  On the magnetostatic interactions between nanoparticles of arbitrary shape , 2004 .

[20]  Stuart A. Wolf,et al.  Structural and magnetic properties of Cr-diluted CoFeB , 2013 .

[21]  Xuanyao Fong,et al.  KNACK: A hybrid spin-charge mixed-mode simulator for evaluating different genres of spin-transfer torque MRAM bit-cells , 2011, 2011 International Conference on Simulation of Semiconductor Processes and Devices.

[22]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[23]  Hui Zhao,et al.  Scaling analysis of in-plane and perpendicular anisotropy magnetic tunnel junctions using a physics-based model , 2014, 72nd Device Research Conference.

[24]  Yasuo Ando,et al.  Fast magnetization precession observed in L10-FePt epitaxial thin film , 2011 .

[25]  Xuanyao Fong,et al.  Bit-Cell Level Optimization for Non-volatile Memories Using Magnetic Tunnel Junctions and Spin-Transfer Torque Switching , 2012, IEEE Transactions on Nanotechnology.

[26]  Jonathan Z. Sun,et al.  Spin angular momentum transfer in current-perpendicular nanomagnetic junctions , 2006, IBM J. Res. Dev..

[27]  J. C. Sloncxewski Current-driven excitation of magnetic multilayers , 2003 .

[28]  J. Katine,et al.  Time-resolved reversal of spin-transfer switching in a nanomagnet. , 2004, Physical review letters.

[29]  Supriyo Datta,et al.  Quantitative model for TMR and spin-transfer torque in MTJ devices , 2010, 2010 International Electron Devices Meeting.

[30]  Y. J. Lee,et al.  Extended scalability of perpendicular STT-MRAM towards sub-20nm MTJ node , 2011, 2011 International Electron Devices Meeting.

[31]  R. Shankar,et al.  Principles of Quantum Mechanics , 2010 .

[32]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[33]  B. Diény,et al.  Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions , 2009 .

[34]  P. Dirac The quantum theory of the electron , 1928 .

[35]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[36]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[37]  T. Daibou,et al.  Tunnel Magnetoresistance Over 100% in MgO-Based Magnetic Tunnel Junction Films With Perpendicular Magnetic L1$_{0}$-FePt Electrodes , 2008, IEEE Transactions on Magnetics.

[38]  Amikam Aharoni,et al.  Demagnetizing factors for rectangular ferromagnetic prisms , 1998 .

[39]  Hui Zhao,et al.  A Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory , 2013, IEEE Journal of Solid-State Circuits.

[40]  Luan Tran,et al.  45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[41]  Michel Dyakonov Spin Hall Effect , 2009 .

[42]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[43]  K Roy,et al.  A Three-Terminal Dual-Pillar STT-MRAM for High-Performance Robust Memory Applications , 2011, IEEE Transactions on Electron Devices.