Bringing Semantics to Spatiotemporal Data Mining: Challenges, Methods, and Applications

The pervasiveness of GPS-equipped mobile devices has been nurturing an unprecedented amount of semanticsrich spatiotemporal data. The confluence of spatiotemporal and semantic information offers new opportunities for extracting valuable knowledge about people's behaviors, but meanwhile also introduces its unique challenges that render conventional spatiotemporal data mining techniques inadequate. Consequently, mining semantics-rich spatiotemporal data has attracted significant research attention from the data mining community in the past few years. In this tutorial, we start with reviewing classic spatiotemporal data mining tasks and identifying the new opportunities introduced by semantics-rich spatiotemporal data. Subsequently, we provide a comprehensive introduction of existing techniques for mining semantics-rich spatiotemporal data, covering topics including spatiotemporal activity mining, spatiotemporal event discovery, and spatiotemporal mobility modeling. Finally, we discuss about the limitations of existing research and identify several important future directions.

[1]  王亮,et al.  Mining frequent trajectory pattern based on vague space partition , 2013 .

[2]  Alexander J. Smola,et al.  Discovering geographical topics in the twitter stream , 2012, WWW.

[3]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[4]  Jae-Gil Lee,et al.  TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..

[5]  Jiawei Han,et al.  Geographical topic discovery and comparison , 2011, WWW.

[6]  George Kollios,et al.  Mining, indexing, and querying historical spatiotemporal data , 2004, KDD.

[7]  Nicholas Jing Yuan,et al.  You Are Where You Go: Inferring Demographic Attributes from Location Check-ins , 2015, WSDM.

[8]  Liang Zhao,et al.  Spatiotemporal Event Forecasting in Social Media , 2015, SDM.

[9]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[10]  Shaowen Wang,et al.  Regions, Periods, Activities: Uncovering Urban Dynamics via Cross-Modal Representation Learning , 2017, WWW.

[11]  Nello Cristianini,et al.  Nowcasting Events from the Social Web with Statistical Learning , 2012, TIST.

[12]  Bart Kuijpers,et al.  Towards Semantic Trajectory Knowledge Discovery , 2007 .

[13]  Shazia Wasim Sadiq,et al.  Joint Modeling of User Check-in Behaviors for Point-of-Interest Recommendation , 2015, CIKM.

[14]  Nikos Mamoulis,et al.  Mining frequent spatio-temporal sequential patterns , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[15]  Jiawei Han,et al.  Swarm: Mining Relaxed Temporal Moving Object Clusters , 2010, Proc. VLDB Endow..

[16]  Zhao Li,et al.  Modeling Infinite Topics on Social Behavior Data with Spatio-temporal Dependence , 2015, CIKM.

[17]  Eric Horvitz,et al.  Eyewitness: identifying local events via space-time signals in twitter feeds , 2015, SIGSPATIAL/GIS.

[18]  Jieping Ye,et al.  Hierarchical Incomplete Multi-source Feature Learning for Spatiotemporal Event Forecasting , 2016, KDD.

[19]  Sergej Sizov,et al.  GeoFolk: latent spatial semantics in web 2.0 social media , 2010, WSDM '10.

[20]  Nicholas Jing Yuan,et al.  On discovery of gathering patterns from trajectories , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[21]  Wei Zhang,et al.  STREAMCUBE: Hierarchical spatio-temporal hashtag clustering for event exploration over the Twitter stream , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[22]  Jieping Ye,et al.  Multi-Task Learning for Spatio-Temporal Event Forecasting , 2015, KDD.

[23]  Joachim Gudmundsson,et al.  Computing longest duration flocks in trajectory data , 2006, GIS '06.

[24]  Anthony K. H. Tung,et al.  Trendspedia: An Internet observatory for analyzing and visualizing the evolving web , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[25]  Stefano Spaccapietra,et al.  Semantic trajectories: Mobility data computation and annotation , 2013, TIST.

[26]  Lidan Shou,et al.  Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories , 2014, Proc. VLDB Endow..

[27]  Hila Becker,et al.  Beyond Trending Topics: Real-World Event Identification on Twitter , 2011, ICWSM.

[28]  Tieniu Tan,et al.  Similarity based vehicle trajectory clustering and anomaly detection , 2005, IEEE International Conference on Image Processing 2005.

[29]  Maximilian Walther,et al.  Geo-spatial Event Detection in the Twitter Stream , 2013, ECIR.

[30]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[31]  Jiawei Han,et al.  Mining periodic behaviors for moving objects , 2010, KDD.

[32]  Sergej Sizov Latent Geospatial Semantics of Social Media , 2012, TIST.

[33]  Anthony J. T. Lee,et al.  Mining frequent trajectory patterns in spatial-temporal databases , 2009, Inf. Sci..

[34]  Jing Yuan,et al.  On Discovery of Traveling Companions from Streaming Trajectories , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[35]  Stefano Spaccapietra,et al.  SeMiTri: a framework for semantic annotation of heterogeneous trajectories , 2011, EDBT/ICDT '11.

[36]  Wang-Chien Lee,et al.  Semantic Annotation of Mobility Data using Social Media , 2015, WWW.

[37]  Daniel Gatica-Perez,et al.  Discovering routines from large-scale human locations using probabilistic topic models , 2011, TIST.

[38]  Xing Xie,et al.  Discovering regions of different functions in a city using human mobility and POIs , 2012, KDD.

[39]  Michael Gertz,et al.  EvenTweet: Online Localized Event Detection from Twitter , 2013, Proc. VLDB Endow..

[40]  James Bailey,et al.  Mining Probabilistic Frequent Spatio-Temporal Sequential Patterns with Gap Constraints from Uncertain Databases , 2013, 2013 IEEE 13th International Conference on Data Mining.

[41]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[42]  Luming Zhang,et al.  GMove: Group-Level Mobility Modeling Using Geo-Tagged Social Media , 2016, KDD.

[43]  Nadia Magnenat-Thalmann,et al.  Who, where, when and what: discover spatio-temporal topics for twitter users , 2013, KDD.

[44]  Shaowen Wang,et al.  GeoBurst: Real-Time Local Event Detection in Geo-Tagged Tweet Streams , 2016, SIGIR.

[45]  Xiaolong Wang,et al.  Modeling Check-in Preferences with Multidimensional Knowledge: A Minimax Entropy Approach , 2016, WSDM '16.

[46]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[47]  Chong Wang,et al.  Mining geographic knowledge using location aware topic model , 2007, GIR '07.

[48]  Jiawei Han,et al.  Mining event periodicity from incomplete observations , 2012, KDD.

[49]  Wang-Chien Lee,et al.  Semantic trajectory mining for location prediction , 2011, GIS.

[50]  Younghoon Kim,et al.  TOPTRAC: Topical Trajectory Pattern Mining , 2015, KDD.

[51]  Tat-Seng Chua,et al.  Mining Travel Patterns from Geotagged Photos , 2012, TIST.

[52]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[53]  Chao Liu,et al.  A probabilistic approach to spatiotemporal theme pattern mining on weblogs , 2006, WWW '06.

[54]  Steffen Staab,et al.  Detecting non-gaussian geographical topics in tagged photo collections , 2014, WSDM.

[55]  Daniel B. Neill,et al.  Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs , 2014, KDD.

[56]  Wei Zhang,et al.  PRED: Periodic Region Detection for Mobility Modeling of Social Media Users , 2017, WSDM.

[57]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[58]  Kazutoshi Sumiya,et al.  Discovery of unusual regional social activities using geo-tagged microblogs , 2011, World Wide Web.