From oogenesis through gastrulation: developmental regulation of apoptosis.

[1]  K. McCall,et al.  Programmed cell death in the germline. , 2005, Seminars in cell & developmental biology.

[2]  A. Fraser,et al.  Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans , 2004, Cell Death and Differentiation.

[3]  K. McCall Eggs over easy: cell death in the Drosophila ovary. , 2004, Developmental biology.

[4]  O. Hobert,et al.  Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation , 2004, Nature Genetics.

[5]  D. Wagner,et al.  Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. , 2004, Developmental cell.

[6]  R. A. Cosgrove,et al.  G1/S phase cyclin-dependent kinase overexpression perturbs early development and delays tissue-specific differentiation in Xenopus , 2004, Development.

[7]  D. Wagner,et al.  Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. , 2004, Developmental cell.

[8]  Teiji Wada,et al.  Mitogen-activated protein kinases in apoptosis regulation , 2004, Oncogene.

[9]  M. Miura,et al.  Role of Bcl-2 family members in invertebrates. , 2004, Biochimica et biophysica acta.

[10]  S. Korsmeyer,et al.  Cell Death Critical Control Points , 2004, Cell.

[11]  K. Kwan,et al.  The Drosophila MOS Ortholog Is Not Essential for Meiosis , 2004, Current Biology.

[12]  K. Sasaki,et al.  Induction of apoptosis in starfish eggs requires spontaneous inactivation of MAPK (extracellular signal-regulated kinase) followed by activation of p38MAPK. , 2003, Molecular biology of the cell.

[13]  T. Mizuno,et al.  Fas-induced apoptosis in B cells , 2003, Apoptosis.

[14]  A. Bergmann,et al.  Regulators of IAP function: coming to grips with the grim reaper. , 2003, Current opinion in cell biology.

[15]  K. McCall,et al.  Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila. , 2003, Genetics.

[16]  K. McCall,et al.  Stage-specific regulation of caspase activity in drosophila oogenesis. , 2003, Developmental biology.

[17]  Sharad Kumar,et al.  Buffy, a Drosophila Bcl‐2 protein, has anti‐apoptotic and cell cycle inhibitory functions , 2003, The EMBO journal.

[18]  D. Green,et al.  Activation‐induced cell death in T cells , 2003, Immunological reviews.

[19]  D. Vaux,et al.  Mammalian mitochondrial IAP binding proteins. , 2003, Biochemical and biophysical research communications.

[20]  Luca Scorrano,et al.  Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. , 2003, Biochemical and biophysical research communications.

[21]  N. Sogame,et al.  Drosophila p53 preserves genomic stability by regulating cell death , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Lei Zhou,et al.  Distinct pathways mediate UV-induced apoptosis in Drosophila embryos. , 2003, Developmental cell.

[23]  J. Sible,et al.  Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos , 2003, Mechanisms of Development.

[24]  M. Vidal,et al.  Caenorhabditis elegans HUS-1 Is a DNA Damage Checkpoint Protein Required for Genome Stability and EGL-1-Mediated Apoptosis , 2002, Current Biology.

[25]  J. Maller,et al.  A Role for G1/S Cyclin-dependent Protein Kinases in the Apoptotic Response to Ionizing Radiation* , 2002, The Journal of Biological Chemistry.

[26]  T. McGarry Geminin deficiency causes a Chk1-dependent G2 arrest in Xenopus. , 2002, Molecular biology of the cell.

[27]  S. Jackson,et al.  Interfaces Between the Detection, Signaling, and Repair of DNA Damage , 2002, Science.

[28]  K. Okazaki,et al.  Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition , 2002, The EMBO journal.

[29]  G. Salvesen,et al.  Apoptosis: IAP proteins: blocking the road to death's door , 2002, Nature Reviews Molecular Cell Biology.

[30]  Antony Rodriguez,et al.  Unrestrained caspase‐dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf‐1 homolog, Dark , 2002, The EMBO journal.

[31]  Jessica S Tashker,et al.  Post-cytochrome C protection from apoptosis conferred by a MAPK pathway in Xenopus egg extracts. , 2002, Molecular biology of the cell.

[32]  Michael O. Hengartner,et al.  C. elegans RAD-5/CLK-2 defines a new DNA damage checkpoint protein , 2001, Current Biology.

[33]  J. Tilly Commuting the death sentence: how oocytes strive to survive , 2001, Nature Reviews Molecular Cell Biology.

[34]  K. Hofmann,et al.  The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis , 2001, Current Biology.

[35]  W. B. Derry,et al.  Caenorhabditis elegans p53: Role in Apoptosis, Meiosis, and Stress Resistance , 2001, Science.

[36]  H. Nakayama,et al.  A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. , 2001, Molecular cell.

[37]  Stephanie Birkey Reffey,et al.  Characterization of XIAP-Deficient Mice , 2001, Molecular and Cellular Biology.

[38]  A. Lewellyn,et al.  The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. A. Moseley,et al.  Wee1-Regulated Apoptosis Mediated by the Crk Adaptor Protein in Xenopus Egg Extracts , 2000, The Journal of cell biology.

[40]  S. Elledge,et al.  The DNA damage response: putting checkpoints in perspective , 2000, Nature.

[41]  Xiaodong Wang,et al.  Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition , 2000, Cell.

[42]  Robert L Moritz,et al.  Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins , 2000, Cell.

[43]  G. Rubin,et al.  Drosophila p53 Binds a Damage Response Element at the reaper Locus , 2000, Cell.

[44]  M. Belvin,et al.  Drosophila p53 Is a Structural and Functional Homolog of the Tumor Suppressor p53 , 2000, Cell.

[45]  S. Milstein,et al.  A conserved checkpoint pathway mediates DNA damage--induced apoptosis and cell cycle arrest in C. elegans. , 2000, Molecular cell.

[46]  H. Horvitz,et al.  Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. , 2000, Science.

[47]  Sharad Kumar,et al.  Debcl, a Proapoptotic Bcl-2 Homologue, Is a Component of the Drosophila melanogaster Cell Death Machinery , 2000, The Journal of cell biology.

[48]  H. Steller,et al.  Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function , 2000, The EMBO journal.

[49]  S. Kornbluth,et al.  Reaper‐induced dissociation of a Scythe‐sequestered cytochrome c‐releasing activity , 1999, The EMBO journal.

[50]  H. Müller,et al.  The Drosophila Caspase Inhibitor DIAP1 Is Essential for Cell Survival and Is Negatively Regulated by HID , 1999, Cell.

[51]  T. Yager,et al.  Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. , 1999, Developmental biology.

[52]  H. Horvitz,et al.  Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. , 1999, Development.

[53]  J. Abrams,et al.  Altered Cytochrome c Display Precedes Apoptotic Cell Death in Drosophila , 1999, The Journal of cell biology.

[54]  S. Kornbluth,et al.  Scythe: a novel reaper‐binding apoptotic regulator , 1998, The EMBO journal.

[55]  Andreas Bergmann,et al.  The Drosophila Gene hid Is a Direct Molecular Target of Ras-Dependent Survival Signaling , 1998, Cell.

[56]  P. Kurada,et al.  Ras Promotes Cell Survival in Drosophila by Downregulating hid Expression , 1998, Cell.

[57]  H. Horvitz,et al.  Genetics of programmed cell death in C. elegans: past, present and future. , 1998, Trends in genetics : TIG.

[58]  H. Horvitz,et al.  The C. elegans Protein EGL-1 Is Required for Programmed Cell Death and Interacts with the Bcl-2–like Protein CED-9 , 1998, Cell.

[59]  L. Cooley,et al.  Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. , 1998, Development.

[60]  T. Kuwana,et al.  Reaper‐induced apoptosis in a vertebrate system , 1997, The EMBO journal.

[61]  J. Gautier,et al.  A developmental timer that regulates apoptosis at the onset of gastrulation , 1997, Mechanisms of Development.

[62]  J. Zhang,et al.  Activation of the metaphase checkpoint and an apoptosis programme in the early zebrafish embryo, by treatment with the spindle-destabilising agent nocodazole , 1997, Zygote.

[63]  A. Lewellyn,et al.  Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos. , 1997, Developmental biology.

[64]  J. Newport,et al.  Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. , 1997, Development.

[65]  A. Lewellyn,et al.  Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus. , 1997, Molecular biology of the cell.

[66]  D O Morgan,et al.  Cyclin-dependent kinases: engines, clocks, and microprocessors. , 1997, Annual review of cell and developmental biology.

[67]  S. Kornbluth Apoptosis in Xenopus egg extracts. , 1997, Methods in enzymology.

[68]  J. Howe,et al.  A developmental timer regulates degradation of cyclin E1 at the midblastula transition during Xenopus embryogenesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Maller,et al.  In vivo regulation of the early embryonic cell cycle in Xenopus. , 1996, Developmental biology.

[70]  T. Hunt,et al.  Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. , 1995, Genes & development.

[71]  S. Nagata,et al.  The Fas death factor , 1995, Science.

[72]  D. Newmeyer,et al.  Cell-free apoptosis in Xenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria , 1994, Cell.

[73]  H. Steller,et al.  Genetic control of programmed cell death in Drosophila. , 1994, Science.

[74]  H. Steller,et al.  Programmed cell death during Drosophila embryogenesis. , 1993, Development.

[75]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode C. elegans , 1986, Cell.

[76]  J. Gerhart,et al.  The timing of early developmental events in Xenopus , 1985 .

[77]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[78]  M. Kirschner,et al.  A major developmental transition in early xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage , 1982, Cell.

[79]  M. Kirschner,et al.  A major developmental transition in early xenopus embryos: II. control of the onset of transcription , 1982, Cell.

[80]  D. Hirsh,et al.  The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. , 1979, Developmental biology.

[81]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.