Affine-Invariant Riemannian Distance Between Infinite-Dimensional Covariance Operators

This paper studies the affine-invariant Riemannian distance on the Riemann-Hilbert manifold of positive definite operators on a separable Hilbert space. This is the generalization of the Riemannian manifold of symmetric, positive definite matrices to the infinite-dimensional setting. In particular, in the case of covariance operators in a Reproducing Kernel Hilbert Space (RKHS), we provide a closed form solution, expressed via the corresponding Gram matrices.

[1]  Nicholas Ayache,et al.  Fast and Simple Calculus on Tensors in the Log-Euclidean Framework , 2005, MICCAI.

[2]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[3]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[4]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[5]  Y. Lim,et al.  The least squares mean of positive Hilbert–Schmidt operators , 2013 .

[6]  Dario Bini,et al.  Computing the Karcher mean of symmetric positive definite matrices , 2013 .

[7]  Pierre Formont,et al.  On the Use of Matrix Information Geometry for Polarimetric SAR Image Classification , 2013 .

[8]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[9]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[10]  R. Bhatia Positive Definite Matrices , 2007 .

[11]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[12]  Moo K. Chung,et al.  Manifold learning on brain functional networks in aging , 2015, Medical Image Anal..

[13]  G. Larotonda Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators , 2007 .

[14]  F. Barbaresco Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fréchet Median , 2013 .

[15]  Anoop Cherian,et al.  Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Jimmie D. Lawson,et al.  The Geometric Mean, Matrices, Metrics, and More , 2001, Am. Math. Mon..

[17]  W. Petryshyn,et al.  Direct and iterative methods for the solution of linear operator equations in Hilbert space , 1962 .

[18]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Vittorio Murino,et al.  Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces , 2014, NIPS.

[20]  Vittorio Murino,et al.  Characterizing Humans on Riemannian Manifolds , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  E. Andruchow,et al.  Non Positively Curved Metric in the Space of Positive Definite Infinite Matrices , 2007 .

[22]  Piercesare Secchi,et al.  Distances and inference for covariance operators , 2014 .