Neurons in the pigeon caudolateral nidopallium differentiate Pavlovian conditioned stimuli but not their associated reward value in a sign-tracking paradigm

[1]  T. Bugnyar,et al.  Cognition without Cortex , 2016, Trends in Cognitive Sciences.

[2]  A. Nieder,et al.  Spatially Tuned Neurons in Corvid Nidopallium Caudolaterale Signal Target Position During Visual Search , 2015, Cerebral cortex.

[3]  Andreas Nieder,et al.  Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows , 2015, Proceedings of the National Academy of Sciences.

[4]  Helen M. Ditz,et al.  Neurons selective to the number of visual items in the corvid songbird endbrain , 2015, Proceedings of the National Academy of Sciences.

[5]  K. Berridge,et al.  Pleasure Systems in the Brain , 2015, Neuron.

[6]  Maik C. Stüttgen,et al.  Blocking NMDA-receptors in the pigeon’s “prefrontal” caudal nidopallium impairs appetitive extinction learning in a sign-tracking paradigm , 2015, Front. Behav. Neurosci..

[7]  M. Lobo,et al.  Shining light on motivation, emotion, and memory processes , 2015, Front. Behav. Neurosci..

[8]  O. Güntürkün,et al.  Neurons in the pigeon nidopallium caudolaterale signal the selection and execution of perceptual decisions , 2014, The European journal of neuroscience.

[9]  Andreas Nieder,et al.  Neuronal Correlates of Visual Working Memory in the Corvid Endbrain , 2014, The Journal of Neuroscience.

[10]  Sarah Starosta,et al.  Recording single neurons' action potentials from freely moving pigeons across three stages of learning. , 2014, Journal of visualized experiments : JoVE.

[11]  Maik C. Stüttgen,et al.  Transient inactivation of the pigeon hippocampus or the nidopallium caudolaterale during extinction learning impairs extinction retrieval in an appetitive conditioning paradigm , 2014, Behavioural Brain Research.

[12]  N. Hessler,et al.  Food rewards modulate the activity of song neurons in Bengalese finches , 2014, The European journal of neuroscience.

[13]  Andreas Nieder,et al.  Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds , 2013, Nature Communications.

[14]  M. Colombo,et al.  How bad do you want it? Reward modulation in the avian nidopallium caudolaterale. , 2013, Behavioral neuroscience.

[15]  Murray Shanahan,et al.  Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis , 2013, Front. Comput. Neurosci..

[16]  Frank Jäkel,et al.  Suboptimal criterion setting in a perceptual choice task with asymmetric reinforcement , 2013, Behavioural Processes.

[17]  Maik C. Stüttgen,et al.  Stimulus-Response-Outcome Coding in the Pigeon Nidopallium Caudolaterale , 2013, PloS one.

[18]  Panayiota Poirazi,et al.  Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses , 2013, Front. Comput. Neurosci..

[19]  R. Passingham,et al.  The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight , 2012 .

[20]  O. Güntürkün,et al.  Lateralized reward‐related visual discrimination in the avian entopallium , 2012, The European journal of neuroscience.

[21]  Daeyeol Lee,et al.  Ubiquity and Specificity of Reinforcement Signals throughout the Human Brain , 2011, Neuron.

[22]  Frank Jäkel,et al.  Mapping Spikes to Sensations , 2011, Front. Neurosci..

[23]  Timothy E. J. Behrens,et al.  Double dissociation of value computations in orbitofrontal and anterior cingulate neurons , 2011, Nature Neuroscience.

[24]  O. Güntürkün,et al.  Adaptive criterion setting in perceptual decision making. , 2011, Journal of the experimental analysis of behavior.

[25]  Paul Cisek,et al.  Neural Correlates of Biased Competition in Premotor Cortex , 2011, The Journal of Neuroscience.

[26]  Karl Zilles,et al.  The receptor architecture of the pigeons’ nidopallium caudolaterale: an avian analogue to the mammalian prefrontal cortex , 2011, Brain Structure and Function.

[27]  Michael Colombo,et al.  Delay activity in avian prefrontal cortex – sample code or reward code? , 2011, The European journal of neuroscience.

[28]  C. Daniel Salzman,et al.  The Convergence of Information about Rewarding and Aversive Stimuli in Single Neurons , 2009, The Journal of Neuroscience.

[29]  T. Robinson,et al.  Dissociating the Predictive and Incentive Motivational Properties of Reward-Related Cues Through the Study of Individual Differences , 2009, Biological Psychiatry.

[30]  S. Kennerley,et al.  Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables , 2009, The European journal of neuroscience.

[31]  A. Aertsen,et al.  Neuronal encoding of meaning: Establishing category-selective response patterns in the avian ‘prefrontal cortex’ , 2009, Behavioural Brain Research.

[32]  M. Colombo,et al.  Responses of pigeon (Columba livia) Wulst neurons during acquisition and reversal of a visual discrimination task. , 2008, Behavioral neuroscience.

[33]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[34]  O. Güntürkün The avian ‘prefrontal cortex’ and cognition , 2005, Current Opinion in Neurobiology.

[35]  Naoya Aoki,et al.  Neural correlates of the proximity and quantity of anticipated food rewards in the ventral striatum of domestic chicks , 2005, The European journal of neuroscience.

[36]  T. Kalenscher,et al.  Single Units in the Pigeon Brain Integrate Reward Amount and Time-to-Reward in an Impulsive Choice Task , 2005, Current Biology.

[37]  T. Robbins,et al.  Dissociable Contributions of the Orbitofrontal and Infralimbic Cortex to Pavlovian Autoshaping and Discrimination Reversal Learning: Further Evidence for the Functional Heterogeneity of the Rodent Frontal Cortex , 2003, The Journal of Neuroscience.

[38]  O. Güntürkün,et al.  Dissociation of Extinction and Behavioral Disinhibition: The Role of NMDA Receptors in the Pigeon Associative Forebrain during Extinction , 2003, The Journal of Neuroscience.

[39]  Michael Colombo,et al.  A lightweight microdrive for single-unit recording in freely moving rats and pigeons. , 2003, Methods.

[40]  O. Güntürkün,et al.  Nonspatial and Subdivision-Specific Working Memory Deficits after Selective Lesions of the Avian Prefrontal Cortex , 2002, The Journal of Neuroscience.

[41]  Onur Güntürkün,et al.  Working Memory Neurons in Pigeons , 2002, The Journal of Neuroscience.

[42]  T. Matsushima,et al.  Reward-related neuronal activities in basal ganglia of domestic chicks , 2001, Neuroreport.

[43]  M. Shadlen,et al.  Effect of Expected Reward Magnitude on the Response of Neurons in the Dorsolateral Prefrontal Cortex of the Macaque , 1999, Neuron.

[44]  O. Güntürkün,et al.  Single unit activity during a Go/NoGo task in the “prefrontal cortex” of pigeons , 1999, Brain Research.

[45]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[46]  O. Güntürkün,et al.  Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro‐ and anterograde pathway tracing study , 1999, The Journal of comparative neurology.

[47]  W. Schultz,et al.  Relative reward preference in primate orbitofrontal cortex , 1999, Nature.

[48]  O. Güntürkün,et al.  Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons: Possible behavioral equivalencies to the mammalian prefrontal system , 1998, Behavioural Brain Research.

[49]  Masataka Watanabe Reward expectancy in primate prefrental neurons , 1996, Nature.

[50]  G. Schoenbaum,et al.  Information coding in the rodent prefrontal cortex. II. Ensemble activity in orbitofrontal cortex. , 1995, Journal of neurophysiology.

[51]  K. Stanhope The Representation of the Reinforcer and the Force of the Pigeon's Keypeck in First and Second-Order Conditioning , 1992, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[52]  K. Stanhope Dissociation of the effect of reinforcer type and response strength on the force of a conditioned response , 1989 .

[53]  Hidehiko Komatsu,et al.  Neuron activities of monkey prefrontal cortex during the learning of visual discrimination tasks with GO/NO-GO performances , 1985, Neuroscience Research.

[54]  H. M. Jenkins,et al.  The form of the auto-shaped response with food or water reinforcers. , 1973, Journal of the experimental analysis of behavior.

[55]  H. Karten,et al.  A stereotaxic atlas of the brain of the pigeon (Columba livia) , 1967 .

[56]  W. K. Honig Prediction of preference, transposition, and transposition-reversal from the generalization gradient. , 1962, Journal of experimental psychology.

[57]  M. Watanabe Prefrontal unit activity during associative learning in the monkey , 2004, Experimental Brain Research.

[58]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[59]  O. Güntürkün Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent in pigeons: functional similarities to the mammalian prefrontal system? , 1997, Journal fur Hirnforschung.

[60]  M A Goodale,et al.  Visually guided pecking in the pigeon (Columba livia). , 1983, Brain, behavior and evolution.

[61]  I. Divac,et al.  The Prefrontal 'Cortex' in the Pigeon , 1982 .

[62]  I. Divac,et al.  The prefrontal 'cortex' in the pigeon. Behavioral evidence. , 1982, Brain, behavior and evolution.

[63]  P. L. Brown,et al.  Auto-shaping of the pigeon's key-peck. , 1968, Journal of the experimental analysis of behavior.