Control variates for quasi-Monte Carlo

Quasi-Monte Carlo (QMC) methods have begun to displace ordinary Monte Carlo (MC) methods in many practical problems. It is natural and obvious to combine QMC methods with traditional variance reduction techniques used in MC sampling, such as control variates. There can, however, be some surprises. The optimal control variate coecient for QMC methods is not in general the same as for MC. Using the MC formula for the control variate coecient can worsen the performance of QMC methods. A good control variate in QMC is not necessarily one that correlates with the target integrand. Instead, certain high frequency parts or derivatives of the control variate should correlate with the corresponding quantities of the target. We present strategies for applying control variate coecients with QMC, and illustrate the method on a 16 dimensional integral from computational nance. We also include a survey of QMC aimed at a statistical readership.

[1]  H. Weyl Ueber ein Problem aus dem Gebiet der Diophantischen Approximationen , 1914 .

[2]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .

[3]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[4]  S. C. Zaremba Some applications of multidimensional integration by parts , 1968 .

[5]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[6]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[7]  William W. L. Chen On irregularities of distribution. , 1980 .

[8]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[9]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[10]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[11]  Paul Bratley,et al.  A guide to simulation , 1983 .

[12]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[13]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[14]  P. K. Sarkar,et al.  A comparative study of Pseudo and Quasi random sequences for the solution intergral equations , 1987 .

[15]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[16]  A. Owen A Central Limit Theorem for Latin Hypercube Sampling , 1992 .

[17]  Peter H. Ritchken,et al.  The valuation of path dependent contracts on the average , 1993 .

[18]  James R. Wilson,et al.  A splitting scheme for control variates , 1993, Oper. Res. Lett..

[19]  Spassimir H. Paskov,et al.  Average Case Complexity of Multivariate Integration for Smooth Functions , 1993, J. Complex..

[20]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[21]  Jerome Spanier,et al.  Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..

[22]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[23]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[24]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[25]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[26]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[27]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[28]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[29]  B. Yu,et al.  Exploring quasi Monte Carlo for marginal density approximation , 1997, Stat. Comput..

[30]  J. Liao,et al.  Variance Reduction in Gibbs Sampler Using Quasi Random Numbers , 1998 .

[31]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[32]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[33]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[34]  Rong-Xian Yue VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .

[35]  Christiane Lemieux,et al.  Variance reduction of Monte Carlo and randomized quasi-Monte Carlo estimators for stochastic volatility models in finance , 1999, WSC '99.

[36]  A. Winsor Sampling techniques. , 2000, Nursing times.

[37]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[38]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[39]  Robert D. Tortora,et al.  Sampling: Design and Analysis , 2000 .

[40]  C. Schlier,et al.  A practitioner ’ s view on QMC integration , 2001 .

[41]  Harald Niederreiter,et al.  The Microstructure of (t, m, s)-Nets , 2001, J. Complex..

[42]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[43]  Ian H. Sloan,et al.  Component-by-component construction of good lattice rules , 2002, Math. Comput..

[44]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[45]  Fred J. Hickernell,et al.  The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..

[46]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[47]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[48]  Wei-Liem Loh On the asymptotic distribution of scrambled net quadrature , 2003 .

[49]  Fred J. Hickernell,et al.  Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.

[50]  Fred J. Hickernell,et al.  Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..