Control variates for quasi-Monte Carlo
暂无分享,去创建一个
[1] H. Weyl. Ueber ein Problem aus dem Gebiet der Diophantischen Approximationen , 1914 .
[2] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[3] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[4] S. C. Zaremba. Some applications of multidimensional integration by parts , 1968 .
[5] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[6] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[7] William W. L. Chen. On irregularities of distribution. , 1980 .
[8] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[9] B. Efron,et al. The Jackknife Estimate of Variance , 1981 .
[10] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[11] Paul Bratley,et al. A guide to simulation , 1983 .
[12] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[13] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[14] P. K. Sarkar,et al. A comparative study of Pseudo and Quasi random sequences for the solution intergral equations , 1987 .
[15] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[16] A. Owen. A Central Limit Theorem for Latin Hypercube Sampling , 1992 .
[17] Peter H. Ritchken,et al. The valuation of path dependent contracts on the average , 1993 .
[18] James R. Wilson,et al. A splitting scheme for control variates , 1993, Oper. Res. Lett..
[19] Spassimir H. Paskov,et al. Average Case Complexity of Multivariate Integration for Smooth Functions , 1993, J. Complex..
[20] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[21] Jerome Spanier,et al. Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..
[22] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[23] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[24] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[25] Arnold J. Stromberg,et al. Number-theoretic Methods in Statistics , 1996 .
[26] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[27] Ronald L. Wasserstein,et al. Monte Carlo: Concepts, Algorithms, and Applications , 1997 .
[28] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[29] B. Yu,et al. Exploring quasi Monte Carlo for marginal density approximation , 1997, Stat. Comput..
[30] J. Liao,et al. Variance Reduction in Gibbs Sampler Using Quasi Random Numbers , 1998 .
[31] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[32] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[33] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[34] Rong-Xian Yue. VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .
[35] Christiane Lemieux,et al. Variance reduction of Monte Carlo and randomized quasi-Monte Carlo estimators for stochastic volatility models in finance , 1999, WSC '99.
[36] A. Winsor. Sampling techniques. , 2000, Nursing times.
[37] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[38] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[39] Robert D. Tortora,et al. Sampling: Design and Analysis , 2000 .
[40] C. Schlier,et al. A practitioner ’ s view on QMC integration , 2001 .
[41] Harald Niederreiter,et al. The Microstructure of (t, m, s)-Nets , 2001, J. Complex..
[42] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[43] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[44] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[45] Fred J. Hickernell,et al. The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..
[46] Frances Y. Kuo,et al. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..
[47] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[48] Wei-Liem Loh. On the asymptotic distribution of scrambled net quadrature , 2003 .
[49] Fred J. Hickernell,et al. Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.
[50] Fred J. Hickernell,et al. Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..