A survey of approximability and inapproximability results for social welfare optimization in multiagent resource allocation

Multiagent resource allocation provides mechanisms to allocate bundles of resources to agents, where resources are assumed to be indivisible and nonshareable. A central goal is to maximize social welfare of such allocations, which can be measured in terms of the sum of utilities realized by the agents (utilitarian social welfare), in terms of their minimum (egalitarian social welfare), and in terms of their product (Nash product social welfare). Unfortunately, social welfare optimization is a computationally intractable task in many settings. We survey recent approximability and inapproximability results on social welfare optimization in multiagent resource allocation, focusing on the two most central representation forms for utility functions of agents, the bundle form and the k-additive form. In addition, we provide some new (in)approximability results on maximizing egalitarian social welfare and social welfare with respect to the Nash product when restricted to certain special cases.

[1]  Yann Chevaleyre,et al.  Multiagent resource allocation , 2005, The Knowledge Engineering Review.

[2]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[3]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[4]  N. Nisan,et al.  Algorithmic Game Theory: Combinatorial Auctions , 2007 .

[5]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[8]  Hervé Moulin,et al.  Fair division and collective welfare , 2003 .

[9]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[10]  Gerhard J. Woeginger,et al.  The exact LPT-bound for maximizing the minimum completion time , 1992, Oper. Res. Lett..

[11]  Jörg Rothe,et al.  Einführung in Computational Social Choice: Individuelle Strategien und kollektive Entscheidungen beim Spielen, Wählen und Teilen , 2011 .

[12]  Yann Chevaleyre,et al.  Multiagent Resource Allocation with K -additive Utility Functions , 2004 .

[13]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[14]  Sanjeev Khanna,et al.  On Allocating Goods to Maximize Fairness , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Yoav Shoham,et al.  Truth revelation in approximately efficient combinatorial auctions , 2002, EC '99.

[16]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[17]  Moshe Tennenholtz,et al.  Bundling equilibrium in combinatorial auctions , 2002, Games Econ. Behav..

[18]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[19]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[20]  Ulrich Endriss,et al.  Nash Social Welfare in Multiagent Resource Allocation , 2009, AMEC/TADA.

[21]  Olivier Hudry Vijay V. Vazirani, "Approximation algorithms", Berlin-Heidelberg, Springer-Verlag, 2001 , 2003 .

[22]  Nikhil Bansal,et al.  The Santa Claus problem , 2006, STOC '06.

[23]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[24]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[25]  Noam Nisan,et al.  On the computational power of iterative auctions , 2005, EC '05.

[26]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[27]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[28]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[29]  Michael Wooldridge,et al.  The complexity of contract negotiation , 2005, Artif. Intell..

[30]  Vahab S. Mirrokni,et al.  Approximating submodular functions everywhere , 2009, SODA.

[31]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[32]  Ivona Bezáková,et al.  Allocating indivisible goods , 2005, SECO.

[33]  Uriel Feige,et al.  On maximizing welfare when utility functions are subadditive , 2006, STOC '06.

[34]  Jörg Rothe,et al.  Complexity of social welfare optimization in multiagent resource allocation , 2010, AAMAS.

[35]  Gerhard J. Woeginger,et al.  A polynomial-time approximation scheme for maximizing the minimum machine completion time , 1997, Oper. Res. Lett..

[36]  David Sarne,et al.  Agent-Mediated Electronic Commerce. Designing Trading Strategies and Mechanisms for Electronic Markets , 2014, Lecture Notes in Business Information Processing.

[37]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[38]  Vahab S. Mirrokni,et al.  Tight approximation algorithms for maximum general assignment problems , 2006, SODA '06.

[39]  Noam Nisan,et al.  Bidding and allocation in combinatorial auctions , 2000, EC '00.

[40]  Y. Shoham,et al.  Truth revelation in rapid, approximately efficient combinatorial auctions , 2001 .

[41]  Subhash Khot,et al.  Approximation Algorithms for the Max-Min Allocation Problem , 2007, APPROX-RANDOM.

[42]  Jörg Rothe,et al.  Complexity and Approximability of Egalitarian Nash Product Social Welfare Optimization in Multiagent Resource Allocation , 2012, STAIRS.

[43]  Scott Aaronson,et al.  Complexity Theory and Cryptology : An Introduction to Cryptocomplexity , 2007 .

[44]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[45]  Amin Saberi,et al.  An Approximation Algorithm for Max-Min Fair Allocation of Indivisible Goods , 2010, SIAM J. Comput..

[46]  Noam Nisan,et al.  Approximation algorithms for combinatorial auctions with complement-free bidders , 2005, STOC '05.

[47]  Uriel Feige,et al.  On allocations that maximize fairness , 2008, SODA '08.

[48]  Jörg Rothe,et al.  Computational complexity and approximability of social welfare optimization in multiagent resource allocation , 2012, Autonomous Agents and Multi-Agent Systems.

[49]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[50]  Jörg Rothe,et al.  Complexity Theory and Cryptology , 2005 .

[51]  D. K. Friesen,et al.  SCHEDULING TO MAXIMIZE THE MINIMUM PROCESSOR FINISH TIME IN A MULTIPROCESSOR SYSTEM , 1982 .

[52]  Uriel Feige,et al.  Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[53]  D. Golovin Max-min fair allocation of indivisible goods , 2005 .

[54]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[55]  Lars Engebretsen,et al.  Clique Is Hard To Approximate Within , 2000 .

[56]  Ellis Horowitz,et al.  Exact and Approximate Algorithms for Scheduling Nonidentical Processors , 1976, JACM.

[57]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[58]  Amin Saberi,et al.  An approximation algorithm for max-min fair allocation of indivisible goods , 2007, STOC '07.

[59]  John Gill,et al.  Computational Complexity of Probabilistic Turing Machines , 1977, SIAM J. Comput..

[60]  Shahar Dobzinski,et al.  An improved approximation algorithm for combinatorial auctions with submodular bidders , 2006, SODA '06.

[61]  Yann Chevaleyre,et al.  Issues in Multiagent Resource Allocation , 2006, Informatica.

[62]  Michel Gendreau,et al.  Combinatorial auctions , 2007, Ann. Oper. Res..

[63]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[64]  Gagan Goel,et al.  On the Approximability of Budgeted Allocations and Improved Lower Bounds for Submodular Welfare Maximization and GAP , 2010, SIAM J. Comput..

[65]  Aranyak Mehta,et al.  Inapproximability Results for Combinatorial Auctions with Submodular Utility Functions , 2007, Algorithmica.

[66]  Phokion G. Kolaitis Hardness Of Approximations , 1996 .

[67]  Yoav Shoham,et al.  Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.

[68]  Yann Chevaleyre,et al.  Multiagent resource allocation in k-additive domains: preference representation and complexity , 2008, Ann. Oper. Res..

[69]  David B. Shmoys,et al.  Using Dual Approximation Algorithms for Scheduling Problems: Theoretical and Practical Results , 1985, FOCS.

[70]  Elchanan Mossel,et al.  On approximately fair allocations of indivisible goods , 2004, EC '04.