A novel Lyapunov stable higher order B-spline online adaptive control paradigm of photovoltaic systems

Abstract In this paper, research on the control of photovoltaic (PV) using a novel higher order B-spline online adaptive neuro-fuzzy paradigm considering high external uncertainties in weather and load demand is presented. We optimize the existing neuro-fuzzy technique by incorporating third order B-spline membership functions in its antecedent part, which we solve using an on-line learning gradient-decent back propagation method. We fit the system parameters online through adaptive fuzzy rules extracted from the maximum power point tracking (MPPT) error and its derivative. Unlike many existing neuro-fuzzy techniques, our method addresses the trapping in local minima. The proposed controller is demonstrated to be stable using Lyapunov stability analysis. The performance of our control philosophy is checked in terms of output power tracking, efficiency, and MPPT error. Finally, we validate via simulation the high robustness and the self-adaptation ability of the proposed method over other existing traditional and intelligent techniques.

[1]  Mohammad A. S. Masoum,et al.  Closure on "Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power point tracking" , 2002 .

[2]  Mohammad Rasool Mojallizadeh,et al.  Designing a new robust sliding mode controller for maximum power point tracking of photovoltaic cells , 2016 .

[3]  Leandro dos Santos Coelho,et al.  B-Spline Neural Network Using an Artificial Immune Network Applied to Identification of a Ball-and-Tube Prototype , 2007 .

[4]  Yi-Hua Liu,et al.  Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments , 2013 .

[5]  Toshihiko Noguchi,et al.  Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system , 2002, IEEE Trans. Ind. Electron..

[6]  B. Zahawi,et al.  Assessment of the Incremental Conductance Maximum Power Point Tracking Algorithm , 2013, IEEE Transactions on Sustainable Energy.

[7]  Carlos A. Canesin,et al.  Evaluation of the Main MPPT Techniques for Photovoltaic Applications , 2013, IEEE Transactions on Industrial Electronics.

[8]  Ali Algaddafi,et al.  An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters , 2017, TheScientificWorldJournal.

[9]  Henri Bourlès,et al.  Robust nonlinear control associating robust feedback linearization and H∞ control , 2006, IEEE Trans. Autom. Control..

[10]  Xin-Jian Zhu,et al.  A maximum power point tracker for photovoltaic energy systems based on fuzzy neural networks , 2009 .

[11]  S Kanthalakshmi,et al.  Linear quadratic optimal control of solar photovoltaic system: An experimental validation , 2016 .

[12]  Kesheng Wang,et al.  Using B-spline neural network to extract fuzzy rules for a centrifugal pump monitoring , 2001, J. Intell. Manuf..

[13]  Ching-Hung Lee,et al.  Identification and control of dynamic systems using recurrent fuzzy neural networks , 2000, IEEE Trans. Fuzzy Syst..

[14]  Nuri Gokmen,et al.  Voltage band based global MPPT controller for photovoltaic systems , 2013 .

[15]  Ángel-Antonio Bayod-Rújula,et al.  A novel MPPT method for PV systems with irradiance measurement , 2014 .

[16]  Chieh-Li Chen,et al.  Robust maximum power point tracking method for photovoltaic cells: A sliding mode control approach , 2009 .

[17]  M. Adel Hamdy A new model for the current-voltage output characteristics of photovoltaic modules , 1994 .

[18]  Josep M. Guerrero,et al.  A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions , 2018, Applied Energy.

[19]  Mohammad Hamiruce Marhaban,et al.  Artificial neural network based maximum power point tracking controller for photovoltaic standalone system , 2016 .

[20]  Chien-Hsuan Chang,et al.  A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications , 2000, IEEE Trans. Ind. Electron..

[21]  M. Vitelli,et al.  Optimization of perturb and observe maximum power point tracking method , 2005, IEEE Transactions on Power Electronics.

[22]  Madan M. Gupta,et al.  SOFT COMPUTING AND INTELLIGENT SYSTEMS:THEORY AND APPLICATIONS , 2008 .

[23]  Pan Duan,et al.  A Two-Stage Particle Swarm Optimization Algorithm for MPPT of Partially Shaded PV Arrays , 2017 .

[24]  A. K. Mukerjee,et al.  DC power supply used as photovoltaic simulator for testing MPPT algorithms , 2007 .

[25]  Engin Karatepe,et al.  Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions , 2009 .

[26]  S. Yuvarajan,et al.  A novel power converter for photovoltaic applications , 2004 .

[27]  Christopher Edwards,et al.  Advances in variable structure and sliding mode control , 2006 .

[28]  Ahteshamul Haque,et al.  Maximum Power Point Tracking (MPPT) Scheme for Solar Photovoltaic System , 2014 .

[29]  Haitham Abu-Rub,et al.  Adaptive neuro-fuzzy inference system-based maximum power point tracking of solar PV modules for fast varying solar radiations , 2012 .

[30]  Huiqing Wen,et al.  An Improved Beta Method With Autoscaling Factor for Photovoltaic System , 2016, IEEE Transactions on Industry Applications.

[31]  Henry Shu-Hung Chung,et al.  A novel maximum power point tracker for PV panels using switching frequency modulation , 2002 .

[32]  Kenko Uchida,et al.  Active and Reactive Power Control Techniques Based on Feedback Linearization and Fuzzy Logic for Three‐Phase Grid‐Connected Photovoltaic Inverters , 2015 .

[33]  R. Teodorescu,et al.  On the Perturb-and-Observe and Incremental Conductance MPPT Methods for PV Systems , 2013, IEEE Journal of Photovoltaics.

[34]  Maissa Farhat,et al.  A new maximum power point method based on a sliding mode approach for solar energy harvesting , 2017 .

[35]  Andres Barrado,et al.  Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems , 2006 .

[36]  Muhammad Arsalan,et al.  Backstepping based non-linear control for maximum power point tracking in photovoltaic system , 2018 .

[37]  Vadim I. Utkin,et al.  Chattering suppression methods in sliding mode control systems , 2007, Annu. Rev. Control..

[38]  P. Karuppusamy,et al.  Adaptive Neuro-Fuzzy Model for Grid-Connected Photovoltaic System , 2015, Int. J. Fuzzy Syst..

[39]  T. H. Ortmeyer,et al.  Evaluation of neural network based real time maximum power tracking controller for PV system , 1995 .

[40]  B N Alajmi,et al.  Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System , 2011, IEEE Transactions on Power Electronics.

[41]  A.M. Al-Ibrahim,et al.  Soft-Computing Model-Based Controllers for Increased Photovoltaic Plant Efficiencies , 2007, IEEE Transactions on Energy Conversion.

[42]  Laiq Khan,et al.  Robust Integral Backstepping Based Nonlinear MPPT Control for a PV System , 2019, Energies.

[43]  Yi-Hua Liu,et al.  Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique , 2015 .

[44]  Omar Rodríguez Álvarez,et al.  Fuzzy Logic Based MPPT Controller for a PV System , 2017 .

[45]  Luigi Piegari,et al.  Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking , 2010 .

[46]  I. J. Schoenberg,et al.  On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .

[47]  Huiqing Wen,et al.  Improved beta parameter based MPPT method in photovoltaic system , 2015, 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia).

[48]  Laiq Khan,et al.  Adaptive B-Spline Based Neuro-Fuzzy Control for Full Car Active Suspension System , 2013 .

[49]  Ziyad M. Salameh,et al.  Step-down maximum power point tracker for photovoltaic systems , 1991 .

[50]  Laiq Khan,et al.  Hybrid adaptive neuro-fuzzy B-spline--based SSSC damping control paradigm using online system identification , 2015 .

[51]  Necmi Altin,et al.  dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter , 2012 .

[52]  Ziqian Liu,et al.  Self‐tuning control of electrical machines using gradient descent optimization , 2007 .

[53]  S. M. Abd-Elazim,et al.  PI controller design using artificial bee colony algorithm for MPPT of photovoltaic system supplied DC motor-pump load , 2016, Complex..

[54]  Suttichai Premrudeepreechacharn,et al.  Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system , 2005 .

[55]  Takashi Hiyama,et al.  Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control , 1995 .

[56]  László T. Kóczy,et al.  Supervised training algorithms for B-Spline neural networks and neuro-fuzzy systems , 2002, Int. J. Syst. Sci..

[57]  Rong-Jong Wai,et al.  High-Performance Stand-Alone Photovoltaic Generation System , 2008, IEEE Transactions on Industrial Electronics.

[58]  V. Agarwal,et al.  A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems , 2004, IEEE Power Electronics Letters.

[59]  C. Larbes,et al.  Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system , 2009 .

[60]  Hansheng Wu,et al.  Adaptive robust stabilisation of uncertain nonlinear dynamical systems: an improved backstepping approach , 2018, Int. J. Control.

[61]  M. Muthuramalingam,et al.  Comparative analysis of distributed MPPT controllers for partially shaded stand alone photovoltaic systems , 2014 .

[62]  Chi-Hsu Wang,et al.  Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control , 1995, IEEE Trans. Syst. Man Cybern..

[63]  Ka Wai Eric Cheng,et al.  Predictive Control of Power Electronics Converters in Renewable Energy Systems , 2017 .

[64]  Tarek Sayed,et al.  Comparison of Adaptive Network Based Fuzzy Inference Systems and B-spline Neuro-Fuzzy Mode Choice Models , 2003 .

[65]  Majid Gandomkar,et al.  Simulation and control of intelligent photovoltaic system using new hybrid fuzzy-neural method , 2017, Neural Computing and Applications.

[66]  Soteris A. Kalogirou,et al.  New MPPT method for stand-alone photovoltaic systems operating under partially shaded conditions , 2013 .

[67]  Tuyen V. Vu,et al.  Enhanced performance of PV power control using model predictive control , 2017 .