Landau’s problems on primes

Au congres international de Cambridge en 1912, Laudau dressa la liste de quatre problemes de base sur les nombres premiers. Ces problemes furent caracterises dans son discours comme "inaccessibles en l'etat actuel de la science". Ces problemes sont les suivants: (1) Existe-t-il une infinite de nombres premiers de la forme n 2 + 1 ? (2) La conjecture (binaire) de Goldbach, que chaque nombre pair superieur a 2 est somme de deux nombres premiers. (3) La conjecture des nombres premiers jumeaux. (4) Existe-t-il toujours un nombre premier entre deux carres consecutifs ? Tous ces problemes sont encore ouverts. Le travail presente ici est un expose des resultats partiels aux problemes (2)-(4), avec une attention particuliere concernant les resultats recents de D. Goldston, C. Yildirim et de l'auteur sur les petits ecarts entre nombres premiers.

[1]  H. Rademacher Beiträge zur viggo brunschen methode in der zahlentheorie , 1924 .

[2]  R. Vaughan On the estimation of Schnirelman's constant. , 1977 .

[3]  Andrew Granville,et al.  HARALD CRAM ER AND THE DISTRIBUTION OF PRIME NUMBERS , 1993 .

[4]  N. F. Gjeddebæk On the difference between consecutive primes , 1966 .

[5]  Hongze Li,et al.  The exceptional set of Goldbach numbers (II) , 2000 .

[6]  On sums of primes , 1983 .

[7]  É. Fouvry,et al.  On the switching principle in sieve theory. , 1986 .

[8]  Gove Effinger,et al.  A complete Vinogradov $3$-primes theorem under the Riemann hypothesis , 1997 .

[9]  C. Jia,et al.  On the largest prime factor of integers , 2000 .

[10]  Olivier Ramaré,et al.  On Šnirel'man's constant , 1995 .

[11]  R. Rankin The difference between consecutive prime numbers. II , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  On the Exceptional Set of Goldbach’s Problem in Short Intervals , 2004 .

[13]  Hongze Li The exceptional set of Goldbach numbers , 1999 .

[14]  D. R. Heath-Brown The number of primes in a short interval. , 1988 .

[15]  G. L. Collected Papers , 1912, Nature.

[16]  J. Schlage-Puchta The equation ?( n) = ?( n + 1) , 2003 .

[17]  On the greatest prime factor of $n^2+1$ , 1982 .

[18]  H. Cramér Prime numbers and probability , 1994 .

[19]  I. Vinogradov,et al.  Representation of an odd number as the sum of three primes , 1937 .

[20]  H. Montgomery,et al.  Primes in short intervals , 2008 .

[21]  R. A. Rankin The Difference between Consecutive Prime Numbers V , 1963, Proceedings of the Edinburgh Mathematical Society.

[22]  J. Pintz,et al.  PRIMES IN TUPLES III: On the difference pn+ν − pn , 2022 .

[23]  J. Pintz,et al.  The Difference Between Consecutive Primes, II , 2001 .

[24]  W. Narkiewicz,et al.  The Development of Prime Number Theory: From Euclid To Hardy And Littlewood , 2010 .

[25]  On the exceptional set of Goldbach numbers in a short interval , 1996 .

[26]  P. Erdijs,et al.  ON THE DIFFERENCE OF CONSECUTIVE PRIMES , 2002 .

[27]  H. V. Koch,et al.  Sur la distribution des nombres premiers , 1901 .

[28]  J. Pintz,et al.  On the exceptional set for the $2k$-twin primes problem , 1992 .

[29]  H. Mikawa On the intervals bewtween consecutive numbers that are sums of two primes , 1993 .

[30]  Kaisa Matomäki The distribution of αp modulo one , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Harald Cramér,et al.  On the order of magnitude of the difference between consecutive prime numbers , 1936 .

[32]  J. Littlewood,et al.  Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .

[33]  J. Pintz,et al.  Small gaps between primes exist , 2005, math/0505300.

[34]  Triantafyllos Xylouris On Linnik's constant , 2009, 0906.2749.

[35]  A. I. Vinogradov The Density Hypothesis for Dirichlet L-Series , 1984 .

[36]  Paul Erdös,et al.  SOME PROBLEMS ON NUMBER THEORY , 1969 .

[37]  J. G. Corput Sur l'hypothèse de Goldbach pour presque tous les nombres pairs , 1936 .

[38]  R. Horn,et al.  A heuristic asymptotic formula concerning the distribution of prime numbers , 1962 .

[39]  L. Schnirelmann,et al.  Über additive Eigenschaften von Zahlen , 1933 .

[40]  On Linnik’s almost Goldbach theorem , 1999 .

[41]  Kaisa Matomäki,et al.  On the exceptional set in Goldbach’s problem in short intervals , 2008 .

[42]  J. Pintz Cramér vs. Cramér. On Cramér's probabilistic model for primes , 2007 .

[43]  H. Davenport Multiplicative Number Theory , 1967 .

[44]  D. Bernoulli,et al.  Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIeme siècle : précédée d'une notice sur les travaux de Léonard Euler, tant imprimés qu'inédits et publiée sous les auspices de l'Académie impériale des sciences de Saint-Pétersbourg , 1843 .

[45]  Jie Wu,et al.  Numbers with a large prime factor , 1999 .

[46]  Tchébichef,et al.  Mémoire sur les nombres premiers. , 1852 .

[47]  The number of primes in a short interval. , 1993 .

[48]  George Richard Herbert Greaves Sieves in Number Theory , 2001 .

[49]  Jingrun Chen ON THE DISTRIBUTION OF ALMOST PRIMES IN AN INTERVAL , 1975 .

[50]  Very Large Gaps between Consecutive Primes , 1997 .

[51]  T. Tatuzawa On the Zeros of Dirichlet's L-Functions , 1950 .

[52]  K. Ramachandra A Note on Numbers with a Large Prime Factor , 1969 .

[53]  Leopold Kronecker,et al.  Vorlesungen über Zahlentheorie , 1978 .

[54]  J. Pintz,et al.  A note on the exceptional set for Goldbach's problem in short intervals , 1993 .

[55]  T. Estermann,et al.  On Goldbach's Problem : Proof that Almost all Even Positive Integers are Sums of Two Primes , 1938 .

[56]  Jianya Liu,et al.  On the almost Goldbach problem of Linnik , 1999 .

[57]  R. C. Vaughan,et al.  The exceptional set in Goldbach''s problem , 1975 .

[58]  On the difference of consecutive primes , 1935 .

[59]  M. N. Huxley On the difference between consecutive primes , 1971 .

[60]  Hugh L. Montgomery,et al.  Zeros ofL-functions , 1969 .

[61]  Jean-Pierre Serre The Large Sieve , 1997 .

[62]  P. Gallagher,et al.  A large sieve density estimate near σ=1 , 1970 .

[63]  P. X. Gallagher Primes and powers of 2 , 1975 .

[64]  Integers Represented as a Sum of Primes and Powers of Two , 2002, math/0201299.

[65]  Short intervals almost all containing primes , 1995 .

[66]  H. Iwaniec Almost-primes represented by quadratic polynomials , 1978 .

[67]  C. Jia Almost all short intervals containing prime numbers , 1996 .

[68]  Jianya Liu,et al.  The number of powers of 2 in a representation of large even integers (I) , 1998 .

[70]  Leszek Kaniecki,et al.  On Šnirelman's constant under the Riemann hypothesis , 1995 .

[71]  Jianya Liu,et al.  The number of powers of 2 in a representation of large even integers II , 1998 .

[72]  Gesammelte Abhandlungen , 1906, Nature.

[73]  Yao Qi,et al.  A Chebychev's type of prime number theorem in a short interval II. , 1992 .

[74]  G. Pólya Heuristic Reasoning in the Theory of Numbers , 1959 .

[75]  I. Vinogradov,et al.  Special Variants of the Method of Trigonometric Sums , 1985 .

[76]  Jangheon Oh A DISTRIBUTION ON ℤ p , 2007 .

[77]  J. Pintz,et al.  Small gaps between products of two primes , 2006, math/0609615.

[78]  C. Pomerance,et al.  Unusually large gaps between consecutive primes , 1990 .

[79]  W. Sierpinski,et al.  Sur certaines hypothèses concernant les nombres premiers , 1958 .

[80]  The difference of consecutive primes , 1940 .

[81]  Jing-Run Chen,et al.  ON THE REPRESENTATION OF A LARGER EVEN INTEGER AS THE SUM OF A PRIME AND THE PRODUCT OF AT MOST TWO PRIMES , 1973 .

[82]  Yannick Saouter,et al.  Checking the odd Goldbach conjecture up to 1020 , 1998, Math. Comput..

[83]  Helmut Maier,et al.  Small differences between prime numbers. , 1988 .

[84]  A. Hildebrand The divisor function at consecutive integers , 1987 .

[85]  J. Pintz,et al.  On the sum of two primes and k powers of two , 2007 .

[86]  R. Rankin The Difference between Consecutive Prime Numbers, III , 1938 .

[87]  Hongze Li The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes (II) , 2000 .

[88]  C. Hooley On the greatest prime factor of a quadratic polynomial , 1967 .

[89]  H. Mikawa,et al.  On the exceptional set in Goldbach's problem , 1992 .

[90]  A. Granville Unexpected Irregularities in the Distribution of Prime Numbers , 1995 .

[91]  J. Littlewood,et al.  Some Problems of “Partitio Numerorum”(V): A Further Contribution to the Study of Goldbach's Problem , 1924 .

[92]  É. Malaquin-Pavan,et al.  [The distribution of drugs]. , 2008, Soins. Gerontologie.

[93]  S. Uchiyama On the difference between consecutive prime numbers , 1975 .

[94]  J. Pintz,et al.  Primes in tuples II , 2007, 0710.2728.

[95]  J. Pintz,et al.  On Linnik’s approximation to Goldbach’s problem. II , 2020, Acta Mathematica Hungarica.