Landau’s problems on primes
暂无分享,去创建一个
[1] H. Rademacher. Beiträge zur viggo brunschen methode in der zahlentheorie , 1924 .
[2] R. Vaughan. On the estimation of Schnirelman's constant. , 1977 .
[3] Andrew Granville,et al. HARALD CRAM ER AND THE DISTRIBUTION OF PRIME NUMBERS , 1993 .
[4] N. F. Gjeddebæk. On the difference between consecutive primes , 1966 .
[5] Hongze Li,et al. The exceptional set of Goldbach numbers (II) , 2000 .
[6] On sums of primes , 1983 .
[7] É. Fouvry,et al. On the switching principle in sieve theory. , 1986 .
[8] Gove Effinger,et al. A complete Vinogradov $3$-primes theorem under the Riemann hypothesis , 1997 .
[9] C. Jia,et al. On the largest prime factor of integers , 2000 .
[10] Olivier Ramaré,et al. On Šnirel'man's constant , 1995 .
[11] R. Rankin. The difference between consecutive prime numbers. II , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] On the Exceptional Set of Goldbach’s Problem in Short Intervals , 2004 .
[13] Hongze Li. The exceptional set of Goldbach numbers , 1999 .
[14] D. R. Heath-Brown. The number of primes in a short interval. , 1988 .
[15] G. L.. Collected Papers , 1912, Nature.
[16] J. Schlage-Puchta. The equation ?( n) = ?( n + 1) , 2003 .
[17] On the greatest prime factor of $n^2+1$ , 1982 .
[18] H. Cramér. Prime numbers and probability , 1994 .
[19] I. Vinogradov,et al. Representation of an odd number as the sum of three primes , 1937 .
[20] H. Montgomery,et al. Primes in short intervals , 2008 .
[21] R. A. Rankin. The Difference between Consecutive Prime Numbers V , 1963, Proceedings of the Edinburgh Mathematical Society.
[22] J. Pintz,et al. PRIMES IN TUPLES III: On the difference pn+ν − pn , 2022 .
[23] J. Pintz,et al. The Difference Between Consecutive Primes, II , 2001 .
[24] W. Narkiewicz,et al. The Development of Prime Number Theory: From Euclid To Hardy And Littlewood , 2010 .
[25] On the exceptional set of Goldbach numbers in a short interval , 1996 .
[26] P. Erdijs,et al. ON THE DIFFERENCE OF CONSECUTIVE PRIMES , 2002 .
[27] H. V. Koch,et al. Sur la distribution des nombres premiers , 1901 .
[28] J. Pintz,et al. On the exceptional set for the $2k$-twin primes problem , 1992 .
[29] H. Mikawa. On the intervals bewtween consecutive numbers that are sums of two primes , 1993 .
[30] Kaisa Matomäki. The distribution of αp modulo one , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.
[31] Harald Cramér,et al. On the order of magnitude of the difference between consecutive prime numbers , 1936 .
[32] J. Littlewood,et al. Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .
[33] J. Pintz,et al. Small gaps between primes exist , 2005, math/0505300.
[34] Triantafyllos Xylouris. On Linnik's constant , 2009, 0906.2749.
[35] A. I. Vinogradov. The Density Hypothesis for Dirichlet L-Series , 1984 .
[36] Paul Erdös,et al. SOME PROBLEMS ON NUMBER THEORY , 1969 .
[37] J. G. Corput. Sur l'hypothèse de Goldbach pour presque tous les nombres pairs , 1936 .
[38] R. Horn,et al. A heuristic asymptotic formula concerning the distribution of prime numbers , 1962 .
[39] L. Schnirelmann,et al. Über additive Eigenschaften von Zahlen , 1933 .
[40] On Linnik’s almost Goldbach theorem , 1999 .
[41] Kaisa Matomäki,et al. On the exceptional set in Goldbach’s problem in short intervals , 2008 .
[42] J. Pintz. Cramér vs. Cramér. On Cramér's probabilistic model for primes , 2007 .
[43] H. Davenport. Multiplicative Number Theory , 1967 .
[44] D. Bernoulli,et al. Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIeme siècle : précédée d'une notice sur les travaux de Léonard Euler, tant imprimés qu'inédits et publiée sous les auspices de l'Académie impériale des sciences de Saint-Pétersbourg , 1843 .
[45] Jie Wu,et al. Numbers with a large prime factor , 1999 .
[46] Tchébichef,et al. Mémoire sur les nombres premiers. , 1852 .
[47] The number of primes in a short interval. , 1993 .
[48] George Richard Herbert Greaves. Sieves in Number Theory , 2001 .
[49] Jingrun Chen. ON THE DISTRIBUTION OF ALMOST PRIMES IN AN INTERVAL , 1975 .
[50] Very Large Gaps between Consecutive Primes , 1997 .
[51] T. Tatuzawa. On the Zeros of Dirichlet's L-Functions , 1950 .
[52] K. Ramachandra. A Note on Numbers with a Large Prime Factor , 1969 .
[53] Leopold Kronecker,et al. Vorlesungen über Zahlentheorie , 1978 .
[54] J. Pintz,et al. A note on the exceptional set for Goldbach's problem in short intervals , 1993 .
[55] T. Estermann,et al. On Goldbach's Problem : Proof that Almost all Even Positive Integers are Sums of Two Primes , 1938 .
[56] Jianya Liu,et al. On the almost Goldbach problem of Linnik , 1999 .
[57] R. C. Vaughan,et al. The exceptional set in Goldbach''s problem , 1975 .
[58] On the difference of consecutive primes , 1935 .
[59] M. N. Huxley. On the difference between consecutive primes , 1971 .
[60] Hugh L. Montgomery,et al. Zeros ofL-functions , 1969 .
[61] Jean-Pierre Serre. The Large Sieve , 1997 .
[62] P. Gallagher,et al. A large sieve density estimate near σ=1 , 1970 .
[63] P. X. Gallagher. Primes and powers of 2 , 1975 .
[64] Integers Represented as a Sum of Primes and Powers of Two , 2002, math/0201299.
[65] Short intervals almost all containing primes , 1995 .
[66] H. Iwaniec. Almost-primes represented by quadratic polynomials , 1978 .
[67] C. Jia. Almost all short intervals containing prime numbers , 1996 .
[68] Jianya Liu,et al. The number of powers of 2 in a representation of large even integers (I) , 1998 .
[70] Leszek Kaniecki,et al. On Šnirelman's constant under the Riemann hypothesis , 1995 .
[71] Jianya Liu,et al. The number of powers of 2 in a representation of large even integers II , 1998 .
[72] Gesammelte Abhandlungen , 1906, Nature.
[73] Yao Qi,et al. A Chebychev's type of prime number theorem in a short interval II. , 1992 .
[74] G. Pólya. Heuristic Reasoning in the Theory of Numbers , 1959 .
[75] I. Vinogradov,et al. Special Variants of the Method of Trigonometric Sums , 1985 .
[76] Jangheon Oh. A DISTRIBUTION ON ℤ p , 2007 .
[77] J. Pintz,et al. Small gaps between products of two primes , 2006, math/0609615.
[78] C. Pomerance,et al. Unusually large gaps between consecutive primes , 1990 .
[79] W. Sierpinski,et al. Sur certaines hypothèses concernant les nombres premiers , 1958 .
[80] The difference of consecutive primes , 1940 .
[81] Jing-Run Chen,et al. ON THE REPRESENTATION OF A LARGER EVEN INTEGER AS THE SUM OF A PRIME AND THE PRODUCT OF AT MOST TWO PRIMES , 1973 .
[82] Yannick Saouter,et al. Checking the odd Goldbach conjecture up to 1020 , 1998, Math. Comput..
[83] Helmut Maier,et al. Small differences between prime numbers. , 1988 .
[84] A. Hildebrand. The divisor function at consecutive integers , 1987 .
[85] J. Pintz,et al. On the sum of two primes and k powers of two , 2007 .
[86] R. Rankin. The Difference between Consecutive Prime Numbers, III , 1938 .
[87] Hongze Li. The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes (II) , 2000 .
[88] C. Hooley. On the greatest prime factor of a quadratic polynomial , 1967 .
[89] H. Mikawa,et al. On the exceptional set in Goldbach's problem , 1992 .
[90] A. Granville. Unexpected Irregularities in the Distribution of Prime Numbers , 1995 .
[91] J. Littlewood,et al. Some Problems of “Partitio Numerorum”(V): A Further Contribution to the Study of Goldbach's Problem , 1924 .
[92] É. Malaquin-Pavan,et al. [The distribution of drugs]. , 2008, Soins. Gerontologie.
[93] S. Uchiyama. On the difference between consecutive prime numbers , 1975 .
[94] J. Pintz,et al. Primes in tuples II , 2007, 0710.2728.
[95] J. Pintz,et al. On Linnik’s approximation to Goldbach’s problem. II , 2020, Acta Mathematica Hungarica.