Generalised Lyndon-Schützenberger Equations
暂无分享,去创建一个
Shinnosuke Seki | Florin Manea | Dirk Nowotka | Mike Müller | Shinnosuke Seki | Dirk Nowotka | F. Manea | M. Müller
[1] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[2] Tero Harju,et al. On the equation x k = z 1 k 1 z 2 k 2 ? z n k n in a free semigroup , 2005 .
[3] Tero Harju,et al. On the equation in a free semigroup , 2005, Theor. Comput. Sci..
[4] M. Schützenberger,et al. The equation $a^M=b^Nc^P$ in a free group. , 1962 .
[5] Florin Manea,et al. Testing Generalised Freeness of Words , 2014, STACS.
[6] Florin Manea,et al. On the Pseudoperiodic Extension of u^l = v^m w^n , 2013, FSTTCS.
[7] Lila Kari,et al. Properties of Pseudo-Primitive Words and their Applications , 2010, Int. J. Found. Comput. Sci..
[8] Lila Kari,et al. An extension of the Lyndon-Schützenberger result to pseudoperiodic words , 2011, Inf. Comput..
[9] Lila Kari,et al. On a special class of primitive words , 2010, Theor. Comput. Sci..
[10] James D. Currie,et al. Unary Patterns with involution , 2012, Int. J. Found. Comput. Sci..
[11] Zhi Xu. A Minimal Periods Algorithm with Applications , 2010, CPM.
[12] M. Lothaire. Combinatorics on words: Bibliography , 1997 .
[13] Sylvain Hallé,et al. Solving Equations on Words with Morphisms and Antimorphisms , 2014, LATA.