Investigation of the oxidation of o-xylene over a vanadia/titania catalyst by means of the TAP reactor

The oxidation of o-xylene over a commercial V2O5/TiO2 (anatase) catalyst was studied in the TAP (Temporal Analysis of Products) reactor system. The transient method with high time resolution has led to new insights into the reaction mechanism. The selective oxidation is shown to consist of a sequence of steps, involving intermediates which desorb as o-toluolaldehyde and phtalide. The key reaction step in the non-selective oxidation is shown to be a decar-bonylation of a surface species, leading to a surface benzoate. The kinetics of the elementary steps in the reaction were derived from a quantitative analysis of the transient responses on o-xylene pulses. On a etudie l'oxydation du o-xylene sur un catalyseur commercial V2O5/TiO2 (anatase) dans un reacteur TAP (analyse temporelle de produits). La methode transitoire a haut taux de resolution permet de mieux comprendre le mecanisme de reaction. On montre que l'oxydation selective consiste en une sequence d'etapes, faisant intervenir des intermediaires qui desorbent come le o-toluolaldehyde et la phtalide. On montre egalement que l'etape de reaction cle dans l'oxydation non selective est la decarbonylation d'une espece de surface, menant au benzoate de surface. Les cinetiques des etapes elementaires dans la reaction ont ete calculees a partir d'une analyse quantitative des reponses transitoires de pul-sions de o-xylene.

[1]  J. Zhu Reaction network and kinetics for the catalytic oxidation of toluene over V2O5 , 1990 .

[2]  D. Klissurski,et al.  Phthalic Anhydride from o-Xylene Catalysis: Science and Engineering , 1991 .

[3]  G. Bond,et al.  Structure and reactivity of titania-supported oxides. Part 2: characterisation of various vanadium oxide on titania catalysts by x-ray photoelectron spectroscopy , 1986 .

[4]  G. Bond Mechanism of the oxidation of o-xylene to phthalic anhydride , 1989 .

[5]  A. Wokaun,et al.  Vanadia layers supported on titania: an FTIR and Raman investigation , 1989 .

[6]  Jerry R. Ebner,et al.  Temporal Analysis of Products (TAP)—A Unique Catalyst Evaluation System with Submillisecond Time Resolution , 1988 .

[7]  G. Bond,et al.  Vanadium oxide monolayer catalysts Preparation, characterization and catalytic activity , 1991 .

[8]  M. Witko Oxidation of hydrocarbons on transition metal oxide catalysts — quantum chemical studies , 1991 .

[9]  Alexis T. Bell,et al.  Laser raman spectroscopy of supported vanadium oxide catalysts , 1990 .

[10]  P. Mills,et al.  Kinetics of the reoxidation of propylene-reduced γ-bismuth molybdate: A TAP reactor study , 1992 .

[11]  J. Haber,et al.  The structure and redox properties of vanadium oxide surface compounds , 1986 .

[12]  Gilbert F. Froment,et al.  Transient Kinetics from the Tap Reactor System: Application to the Oxidation of Propylene to Acrolein , 1995 .

[13]  G. Froment,et al.  TAP Investigations of Selective o-Xylene Oxidation , 1992 .

[14]  M. Witko,et al.  Oxidation of o-xylene: a quantum chemical study , 1988 .

[15]  Shirley S. Chan,et al.  The interaction of vanadium pentoxide with titania (anatase): Part I. Effect on o-xylene oxidation to phthalic anhydride , 1985 .

[16]  I. Wachs,et al.  Reaction network and kinetics of o-xylene oxidation to phthalic anhydride over V2O5/TiO2 (anatase) catalysts , 1987 .

[17]  J. V. Ommen,et al.  Infrared study of the selective oxidation of toluene and o-xylene on vanadium oxide/TiO2 , 1986 .

[18]  N. Foster,et al.  Catalysts, Kinetics and Reactor Design in Phthalic Anhydride Synthesis , 1979 .

[19]  M. Sanati,et al.  A high-resolution electron microscopy investigation of TiO2(B)-supported vanadium oxide catalysts , 1990 .