A high efficiency critical mode boost PFC using a variable inductor

In low-to-mid power applications, a critical conduction mode (CRM) boost power factor corrector (PFC) is widely used due to its simple control and a reduced switching loss. One of the important characteristics of CRM boost PFC is that the switching frequency is not constant and the range of variation is wide. Due to this variability of the switching frequency, there is a design guideline, which must be satisfied. That is, the minimum switching frequency must be higher than the audible frequency. In that reason, a small boost inductance is required to increase the switching frequency. However, this increases the switching loss resulting in a reduced efficiency. In this paper, a new method of improving the efficiency using a variable inductor is proposed. A variable inductor can be implemented by a simple auxiliary circuit. At nominal, where a high efficiency is required, the proposed method operates with a large inductance, which results in the improved efficiency with a decreased switching frequency. On the other hand, when the switching frequency decreases to the audible frequency, the inductance is changed to a smaller value, keeping the frequency higher than the audible frequency over all the range of input line voltage.

[1]  K.T. Kim,et al.  Variable On-time Control of the Critical Conduction Mode Boost Power Factor Correction Converter to Improve Zero-crossing Distortion , 2005, 2005 International Conference on Power Electronics and Drives Systems.

[2]  L. Huber,et al.  Single-Stage, Universal-Input AC/DC LED Driver With Current-Controlled Variable PFC Boost Inductor , 2012, IEEE Transactions on Power Electronics.

[3]  A. Fotowat-Ahmady,et al.  A Fully ZVS Critical Conduction Mode Boost PFC , 2012, IEEE Transactions on Power Electronics.

[4]  M. Jovanovic,et al.  Adaptive off-time control for variable-frequency, soft-switched flyback converter at light loads , 2002 .

[5]  Milan M. Jovanovic,et al.  State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview , 2005, IEEE Transactions on Industrial Electronics.

[6]  Marco A. Dalla Costa,et al.  Investigation of a New Control Strategy for Electronic Ballasts Based on Variable Inductor , 2008, IEEE Transactions on Industrial Electronics.

[7]  Oscar Garcia,et al.  Single phase power factor correction: a survey , 2003 .

[8]  M. Gotfryd Limits in boost power factor corrector operating in border-line mode , 2003 .

[9]  L. Huber,et al.  Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converters , 2009, IEEE Transactions on Power Electronics.

[10]  藪崎 純 Power factor correction switching power supply , 2009 .

[11]  M.S. Perdigao,et al.  Using Magnetic Regulators for the Optimization of Universal Ballasts , 2008, IEEE Transactions on Power Electronics.

[12]  Keyue Smedley,et al.  A topology survey of single-stage power factor corrector with a boost type input-current-shaper , 2000, APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058).

[13]  Milan M. Jovanovic,et al.  Evaluation of input current in the critical mode boost PFC converter for distributed power systems , 2001, APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181).

[14]  S. Ben-Yaakov,et al.  A current-controlled variable-inductor for high frequency resonant power circuits , 1994, Proceedings of 1994 IEEE Applied Power Electronics Conference and Exposition - ASPEC'94.