Dynamic bayesian networks: representation, inference and learning

Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data. In particular, the main novel technical contributions of this thesis are as follows: a way of representing Hierarchical HMMs as DBNs, which enables inference to be done in O(T ) time instead of O(T ), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T ) space instead of O(T ); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.

[1]  P. Gill,et al.  Practical optimization , 2019 .

[2]  Frank Jensen,et al.  Approximations in Bayesian Belief Universe for Knowledge Based Systems , 2013, UAI 1990.

[3]  David Heckerman,et al.  A Tractable Inference Algorithm for Diagnosing Multiple Diseases , 2013, UAI.

[4]  Ross D. Shachter,et al.  Simulation Approaches to General Probabilistic Inference on Belief Networks , 2013, UAI.

[5]  Kuo-Chu Chang,et al.  Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks , 2013, UAI.

[6]  Bertran Steinsky,et al.  Enumeration of labelled chain graphs and labelled essential directed acyclic graphs , 2003, Discret. Math..

[7]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[8]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[9]  J. Beran Time series analysis , 2003 .

[10]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[11]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[12]  Pradipta Sarkar,et al.  Sequential Monte Carlo Methods in Practice , 2003, Technometrics.

[13]  Y. Wu,et al.  Dynamic Textures , 2003, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[14]  Jeff A. Bilmes,et al.  Graphical models and automatic speech recognition , 2002 .

[15]  Leonidas J. Guibas,et al.  Sensing, tracking and reasoning with relations , 2002, IEEE Signal Process. Mag..

[16]  Wolfram Burgard,et al.  Learning motion patterns of persons for mobile service robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  Sekhar Tatikonda,et al.  Loopy Belief Propogation and Gibbs Measures , 2002, UAI.

[18]  Joshua Goodman,et al.  Reduction of Maximum Entropy Models to Hidden Markov Models , 2002, UAI.

[19]  Leonid Peshkin,et al.  Factored Particles for Scalable Monitoring , 2002, UAI.

[20]  Bruce D'Ambrosio,et al.  Real-Time Inference with Large-Scale Temporal Bayes Nets , 2002, UAI.

[21]  Tommi S. Jaakkola,et al.  Unsupervised Active Learning in Large Domains , 2002, UAI.

[22]  T. Heskes,et al.  Expectation propagation for approximate inference in dynamic bayesian networks , 2002, UAI 2002.

[23]  Tom Minka,et al.  Expectation-Propogation for the Generative Aspect Model , 2002, UAI.

[24]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[25]  Siem Jan Koopman,et al.  A simple and efficient simulation smoother for state space time series analysis , 2002 .

[26]  Dale Schuurmans,et al.  Data perturbation for escaping local maxima in learning , 2002, AAAI/IAAI.

[27]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[28]  Zhi Tian,et al.  Efficient inference for mixed Bayesian networks , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[29]  G. West,et al.  Policy Recognition in the Abstract Hidden Markov Model , 2002, J. Artif. Intell. Res..

[30]  Geoffrey Zweig,et al.  The graphical models toolkit: An open source software system for speech and time-series processing , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[31]  Kevin P. Murphy,et al.  A coupled HMM for audio-visual speech recognition , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[32]  R. Greiner,et al.  Learning Bayesian networks from data: An information-theory based approach , 2002, Artif. Intell..

[33]  Graham J. Wills,et al.  Introduction to graphical modelling , 1995 .

[34]  Tommi S. Jaakkola,et al.  A new approach to analyzing gene expression time series data , 2002, RECOMB '02.

[35]  D. Heckerman,et al.  Autoregressive Tree Models for Time-Series Analysis , 2002, SDM.

[36]  Nevin Lianwen Zhang,et al.  Inference in Bayesian Networks: The Role of Context-Specific Independence , 2002, Int. J. Inf. Technol. Decis. Mak..

[37]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[38]  Bo Thiesson,et al.  Accelerating EM for Large Databases , 2001, Machine Learning.

[39]  S. Lauritzen,et al.  The TM algorithm for maximising a conditional likelihood function , 2001 .

[40]  Steffen L. Lauritzen,et al.  Representing and Solving Decision Problems with Limited Information , 2001, Manag. Sci..

[41]  Michael I. Jordan,et al.  Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..

[42]  Helge Langseth,et al.  Parameter Learning in Object-Oriented Bayesian Networks , 2001, Annals of Mathematics and Artificial Intelligence.

[43]  Craig Boutilier,et al.  Symbolic Dynamic Programming for First-Order MDPs , 2001, IJCAI.

[44]  Stuart J. Russell,et al.  Approximate inference for first-order probabilistic languages , 2001, IJCAI.

[45]  Jacob Goldberger,et al.  Sequentially finding the N-Best List in Hidden Markov Models , 2001, IJCAI.

[46]  Daphne Koller,et al.  Active Learning for Structure in Bayesian Networks , 2001, IJCAI.

[47]  Sebastian Thrun,et al.  A Bayesian Multiresolution Independence Test for Continuous Variables , 2001, UAI.

[48]  Avi Pfeffer,et al.  Sufficiency, Separability and Temporal Probabilistic Models , 2001, UAI.

[49]  Michael D. Perlman,et al.  Enumerating Markov Equivalence Classes of Acyclic Digraph Models , 2001, UAI.

[50]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.

[51]  Kevin P. Murphy,et al.  The Factored Frontier Algorithm for Approximate Inference in DBNs , 2001, UAI.

[52]  Uri Lerner,et al.  Inference in Hybrid Networks: Theoretical Limits and Practical Algorithms , 2001, UAI.

[53]  Robert Castelo,et al.  Improved learning of Bayesian networks , 2001, UAI.

[54]  Uri Lerner,et al.  Exact Inference in Networks with Discrete Children of Continuous Parents , 2001, UAI.

[55]  Yee Whye Teh,et al.  Belief Optimization for Binary Networks: A Stable Alternative to Loopy Belief Propagation , 2001, UAI.

[56]  Michael I. Jordan,et al.  Efficient Stepwise Selection in Decomposable Models , 2001, UAI.

[57]  Jesse Hoey,et al.  Hierarchical unsupervised learning of facial expression categories , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.

[58]  William W. Cohen,et al.  Finding a path is harder than finding a tree , 2001, AISTATS.

[59]  Michael I. Jordan,et al.  Convergence rates of the Voting Gibbs classifier, with application to Bayesian feature selection , 2001, ICML.

[60]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[61]  Svetha Venkatesh,et al.  Tracking and Surveillance in Wide-Area Spatial Environments Using the Abstract Hidden Markov Model , 2001, Int. J. Pattern Recognit. Artif. Intell..

[62]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[63]  Christophe Andrieu,et al.  Iterative algorithms for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[64]  Kristian G. Olesen,et al.  Maximal Prime Subgraph Decomposition of Bayesian Networks , 2001, FLAIRS.

[65]  Thomas D. Nielsen,et al.  Structural Learning in Object Oriented Domains , 2001, FLAIRS.

[66]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[67]  Adnan Darwiche,et al.  Constant-space reasoning in dynamic Bayesian networks , 2001, Int. J. Approx. Reason..

[68]  Steffen L. Lauritzen,et al.  Stable local computation with conditional Gaussian distributions , 2001, Stat. Comput..

[69]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[70]  Kenneth Rose,et al.  Deterministically annealed design of hidden Markov model speech recognizers , 2001, IEEE Trans. Speech Audio Process..

[71]  I. Marschner Miscellanea On stochastic versions of the algorithm , 2001 .

[72]  B. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[73]  Geoff Hulten,et al.  Learning from Infinite Data in Finite Time , 2001, NIPS.

[74]  Kevin P. Murphy,et al.  Linear-time inference in Hierarchical HMMs , 2001, NIPS.

[75]  Richard S. Sutton,et al.  Predictive Representations of State , 2001, NIPS.

[76]  John Langford,et al.  Risk Sensitive Particle Filters , 2001, NIPS.

[77]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[78]  M. Newton,et al.  Easy Estilnation of Nonnalizing Constants and Bayes Factors from Posterior Simulation: Stabilizing the Harmonic :Nlean Estimator 1 , 2000 .

[79]  Geoffrey Zweig,et al.  Exact alpha-beta computation in logarithmic space with application to MAP word graph construction , 2000, INTERSPEECH.

[80]  Harriet J. Nock,et al.  Loosely coupled HMMs for ASR , 2000, INTERSPEECH.

[81]  Johann Schumann,et al.  Generating Data Analysis Programs from Statistical Models , 2000, SAIG.

[82]  Monson H. Hayes,et al.  Maximum likelihood training of the embedded HMM for face detection and recognition , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[83]  R. Dahlhaus Graphical interaction models for multivariate time series1 , 2000 .

[84]  Marek J Druzdzel,et al.  AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks , 2000, Journal of Artificial Intelligence Research.

[85]  Aaron F. Bobick,et al.  Recognition of Visual Activities and Interactions by Stochastic Parsing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  Craig Boutilier,et al.  Stochastic dynamic programming with factored representations , 2000, Artif. Intell..

[87]  Svetha Venkatesh,et al.  On the Recognition of Abstract Markov Policies , 2000, AAAI/IAAI.

[88]  Nir Friedman,et al.  Being Bayesian about Network Structure , 2000, UAI.

[89]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[90]  Thomas D. Nielsen,et al.  Using ROBDDs for Inference in Bayesian Networks with Troubleshooting as an Example , 2000, UAI.

[91]  Nir Friedman,et al.  Gaussian Process Networks , 2000, UAI.

[92]  Jeff A. Bilmes,et al.  Dynamic Bayesian Multinets , 2000, UAI.

[93]  Wim Wiegerinck,et al.  Variational Approximations between Mean Field Theory and the Junction Tree Algorithm , 2000, UAI.

[94]  Nir Friedman,et al.  Likelihood Computations Using Value Abstraction , 2000, UAI.

[95]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[96]  Pierre-Henri Wuillemin,et al.  Top-Down Construction and Repetetive Structures Representation in Bayesian Networks , 2000, FLAIRS.

[97]  Geoffrey E. Hinton,et al.  Variational Learning for Switching State-Space Models , 2000, Neural Computation.

[98]  Simon J. Godsill,et al.  Methodology for Monte Carlo smoothing with application to time-varying autoregressions , 2000 .

[99]  V. Thorsson,et al.  Discovery of regulatory interactions through perturbation: inference and experimental design. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[100]  Joshua Goodman,et al.  Semiring Parsing , 1999, CL.

[101]  Yishay Mansour,et al.  Approximate Planning in Large POMDPs via Reusable Trajectories , 1999, NIPS.

[102]  Sam T. Roweis,et al.  Constrained Hidden Markov Models , 1999, NIPS.

[103]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[104]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[105]  Pieter J. Mosterman,et al.  Diagnosis of continuous valued systems in transient operating regions , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[106]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[107]  Michael I. Jordan,et al.  Mixed Memory Markov Models: Decomposing Complex Stochastic Processes as Mixtures of Simpler Ones , 1999, Machine Learning.

[108]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[109]  P. Dellaportas,et al.  Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models , 1999 .

[110]  Anders L. Madsen,et al.  LAZY Propagation: A Junction Tree Inference Algorithm Based on Lazy Evaluation , 1999, Artif. Intell..

[111]  Doina Precup,et al.  Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning , 1999, Artif. Intell..

[112]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[113]  Nevin Lianwen Zhang,et al.  On the Role of Context-Specific Independence in Probabilistic Inference , 1999, IJCAI.

[114]  Yaacov Ritov,et al.  Tracking Many Objects with Many Sensors , 1999, IJCAI.

[115]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[116]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[117]  Xavier Boyen,et al.  Discovering the Hidden Structure of Complex Dynamic Systems , 1999, UAI.

[118]  Kevin P. Murphy,et al.  A Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables , 1999, UAI.

[119]  Gregory F. Cooper,et al.  Causal Discovery from a Mixture of Experimental and Observational Data , 1999, UAI.

[120]  D. Pe’er,et al.  Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm , 1999, UAI.

[121]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[122]  Jim Q. Smith,et al.  Approximate Learning in Complex Dynamic Bayesian Networks , 1999, UAI.

[123]  Xavier Boyen,et al.  Exploiting the Architecture of Dynamic Systems , 1999, AAAI/IAAI.

[124]  C. Bielza,et al.  Decision Analysis by Augmented Probability Simulation , 1999 .

[125]  Matthew Brand,et al.  Structure Learning in Conditional Probability Models via an Entropic Prior and Parameter Extinction , 1999, Neural Computation.

[126]  Thorsten Brants,et al.  Cascaded Markov Models , 1999, EACL.

[127]  Chang‐Jin Kim,et al.  State-Space Models with Regime-Switching: Classical and Gibbs Sampling Approaches with Applications , 1999 .

[128]  Mark J. F. Gales,et al.  Semi-tied covariance matrices for hidden Markov models , 1999, IEEE Trans. Speech Audio Process..

[129]  Bruce D'Ambrosio,et al.  A Factorized Representation of Independence of Causal Influence and Lazy Propagation , 1999, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[130]  Eugene Santos,et al.  Probabilistic temporal networks: A unified framework for reasoning with time and uncertainty , 1999, Int. J. Approx. Reason..

[131]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[132]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[133]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[134]  Xavier Boyen,et al.  Approximate Learning of Dynamic Models , 1998, NIPS.

[135]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[136]  Adrian F. M. Smith,et al.  Bayesian Statistics 5. , 1998 .

[137]  Michael E. Tipping Probabilistic Visualisation of High-Dimensional Binary Data , 1998, NIPS.

[138]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[139]  Jeff A. Bilmes,et al.  Data-driven extensions to HMM statistical dependencies , 1998, ICSLP.

[140]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[141]  Sebastian Thrun,et al.  Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.

[142]  Prakash P. Shenoy,et al.  A Comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions , 1998, UAI.

[143]  Nevin Lianwen Zhang,et al.  Probabilistic Inference in Influence Diagrams , 1998, Comput. Intell..

[144]  Ross D. Shachter Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams) , 1998, UAI.

[145]  Nir Friedman,et al.  The Bayesian Structural EM Algorithm , 1998, UAI.

[146]  Stuart J. Russell,et al.  Learning the Structure of Dynamic Probabilistic Networks , 1998, UAI.

[147]  Xavier Boyen,et al.  Tractable Inference for Complex Stochastic Processes , 1998, UAI.

[148]  Yoram Singer,et al.  The Hierarchical Hidden Markov Model: Analysis and Applications , 1998, Machine Learning.

[149]  Avi Pfeffer,et al.  Structured Representation of Complex Stochastic Systems , 1998, AAAI/IAAI.

[150]  Prakash P. Shenoy,et al.  Some Improvements to the Shenoy-Shafer and Hugin Architectures for Computing Marginals , 1998, Artif. Intell..

[151]  M. Isard,et al.  A Smoothing Filter for CONDENSATION , 1998, ECCV.

[152]  D. Nilsson,et al.  An efficient algorithm for finding the M most probable configurationsin probabilistic expert systems , 1998, Stat. Comput..

[153]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[154]  Paola Sebastiani,et al.  Parameter Estimation in Bayesian Networks from Incomplete Databases , 1998, Intell. Data Anal..

[155]  Naonori Ueda,et al.  Deterministic annealing EM algorithm , 1998, Neural Networks.

[156]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[157]  Stuart J. Russell,et al.  Reinforcement Learning with Hierarchies of Machines , 1997, NIPS.

[158]  Stuart J. Russell,et al.  Adaptive Probabilistic Networks with Hidden Variables , 1997, Machine Learning.

[159]  Kevin P. Murphy,et al.  Space-Efficient Inference in Dynamic Probabilistic Networks , 1997, IJCAI.

[160]  Li Yan,et al.  Independence of causal influence and clique tree propagation , 1997, Int. J. Approx. Reason..

[161]  David Heckerman,et al.  Structure and Parameter Learning for Causal Independence and Causal Interaction Models , 1997, UAI.

[162]  Avi Pfeffer,et al.  Object-Oriented Bayesian Networks , 1997, UAI.

[163]  Nir Friedman,et al.  Sequential Update of Bayesian Network Structure , 1997, UAI.

[164]  Prakash P. Shenoy,et al.  Binary join trees for computing marginals in the Shenoy-Shafer architecture , 1997, Int. J. Approx. Reason..

[165]  Kathryn B. Laskey,et al.  Network Fragments: Representing Knowledge for Constructing Probabilistic Models , 1997, UAI.

[166]  Craig Boutilier,et al.  Structured Arc Reversal and Simulation of Dynamic Probabilistic Networks , 1997, UAI.

[167]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[168]  Nir Friedman,et al.  Learning Belief Networks in the Presence of Missing Values and Hidden Variables , 1997, ICML.

[169]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[170]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[171]  Michael I. Jordan,et al.  Probabilistic Independence Networks for Hidden Markov Probability Models , 1997, Neural Computation.

[172]  Gregory F. Cooper,et al.  A Simple Constraint-Based Algorithm for Efficiently Mining Observational Databases for Causal Relationships , 1997, Data Mining and Knowledge Discovery.

[173]  Peter Haddawy,et al.  Answering Queries from Context-Sensitive Probabilistic Knowledge Bases (cid:3) , 1996 .

[174]  Steffen L. Lauritzen,et al.  Local computation with valuations from a commutative semigroup , 1997, Annals of Mathematics and Artificial Intelligence.

[175]  Enrique F. Castillo,et al.  Expert Systems and Probabilistic Network Models , 1996, Monographs in Computer Science.

[176]  Yoram Singer,et al.  Training Algorithms for Hidden Markov Models using Entropy Based Distance Functions , 1996, NIPS.

[177]  Michael I. Jordan,et al.  Hidden Markov Decision Trees , 1996, NIPS.

[178]  Elie Bienenstock,et al.  Compositionality, MDL Priors, and Object Recognition , 1996, NIPS.

[179]  Padhraic Smyth,et al.  Clustering Sequences with Hidden Markov Models , 1996, NIPS.

[180]  Michael I. Jordan,et al.  Triangulation by Continuous Embedding , 1996, NIPS.

[181]  Dana Ron,et al.  The power of amnesia: Learning probabilistic automata with variable memory length , 1996, Machine Learning.

[182]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[183]  David Heckerman,et al.  Causal independence for probability assessment and inference using Bayesian networks , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[184]  Adnan Darwiche,et al.  Inference in belief networks: A procedural guide , 1996, Int. J. Approx. Reason..

[185]  Geoffrey E. Hinton,et al.  Parameter estimation for linear dynamical systems , 1996 .

[186]  Mari Ostendorf,et al.  From HMM's to segment models: a unified view of stochastic modeling for speech recognition , 1996, IEEE Trans. Speech Audio Process..

[187]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[188]  Yoshua Bengio,et al.  Input-output HMMs for sequence processing , 1996, IEEE Trans. Neural Networks.

[189]  Michael P. Wellman,et al.  Generalized Queries on Probabilistic Context-Free Grammars , 1996, AAAI/IAAI, Vol. 2.

[190]  Nevin Lianwen Zhang,et al.  Exploiting Causal Independence in Bayesian Network Inference , 1996, J. Artif. Intell. Res..

[191]  Dan Geiger,et al.  A sufficiently fast algorithm for finding close to optimal junction trees , 1996, UAI.

[192]  Constantin F. Aliferis,et al.  A Structurally and Temporally Extended Bayesian Belief Network Model: Definitions, Properties, and Modeling Techniques , 1996, UAI.

[193]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[194]  Michael I. Jordan,et al.  Computing upper and lower bounds on likelihoods in intractable networks , 1996, UAI.

[195]  Gregory M. Provan,et al.  Query DAGs: A practical paradigm for implementing belief-network inference , 1996, UAI.

[196]  David Maxwell Chickering,et al.  Efficient Approximations for the Marginal Likelihood of Incomplete Data Given a Bayesian Network , 1996, UAI.

[197]  David Heckerman,et al.  Asymptotic Model Selection for Directed Networks with Hidden Variables , 1996, UAI.

[198]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[199]  A. Benveniste,et al.  High-level primitives for recursive maximum likelihood estimation , 1996, IEEE Trans. Autom. Control..

[200]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[201]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[202]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[203]  Geoffrey E. Hinton,et al.  The EM algorithm for mixtures of factor analyzers , 1996 .

[204]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[205]  Michael Riley,et al.  Speech Recognition by Composition of Weighted Finite Automata , 1996, ArXiv.

[206]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[207]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[208]  Michael I. Jordan,et al.  Convergence results for the EM approach to mixtures of experts architectures , 1995, Neural Networks.

[209]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[210]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[211]  Stuart J. Russell,et al.  The BATmobile: Towards a Bayesian Automated Taxi , 1995, IJCAI.

[212]  Bo Thiesson,et al.  Accelerated Quantification of Bayesian Networks with Incomplete Data , 1995, KDD.

[213]  Stuart J. Russell,et al.  Local Learning in Probabilistic Networks with Hidden Variables , 1995, IJCAI.

[214]  David Heckerman,et al.  A Bayesian Approach to Learning Causal Networks , 1995, UAI.

[215]  Adnan Darwiche,et al.  Conditioning Algorithms for Exact and Approximate Inference in Causal Networks , 1995, UAI.

[216]  Stuart J. Russell,et al.  Stochastic simulation algorithms for dynamic probabilistic networks , 1995, UAI.

[217]  Darryl Morrell,et al.  Implementation of Continuous Bayesian Networks Using Sums of Weighted Gaussians , 1995, UAI.

[218]  J. York,et al.  Bayesian Graphical Models for Discrete Data , 1995 .

[219]  Sabine Glesner,et al.  Constructing Flexible Dynamic Belief Networks from First-Order Probalistic Knowledge Bases , 1995, ECSQARU.

[220]  Kuo-Chu Chang,et al.  Symbolic probabilistic inference with both discrete and continuous variables , 1995, IEEE Trans. Syst. Man Cybern..

[221]  Uffe Kjærulff,et al.  Blocking Gibbs sampling in very large probabilistic expert systems , 1995, Int. J. Hum. Comput. Stud..

[222]  Yoshua Bengio,et al.  Diffusion of Context and Credit Information in Markovian Models , 1995, J. Artif. Intell. Res..

[223]  Paul Dagum,et al.  Time series prediction using belief network models , 1995, Int. J. Hum. Comput. Stud..

[224]  R. T. Lie,et al.  Birth Defects Registered by Double Sampling: A Bayesian Approach Incorporating Covariates and Model Uncertainty , 1995 .

[225]  Manfred K. Warmuth,et al.  Additive versus exponentiated gradient updates for linear prediction , 1995, STOC '95.

[226]  John D. Lafferty,et al.  Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[227]  Uffe Kjærulff,et al.  dHugin: a computational system for dynamic time-sliced Bayesian networks , 1995 .

[228]  R. Jirousek,et al.  On the effective implementation of the iterative proportional fitting procedure , 1995 .

[229]  S. Lauritzen The EM algorithm for graphical association models with missing data , 1995 .

[230]  Andreas Stolcke,et al.  Bayesian learning of probabilistic language models , 1994 .

[231]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[232]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[233]  Oscar E. Agazzi,et al.  Keyword Spotting in Poorly Printed Documents using Pseudo 2-D Hidden Markov Models , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[234]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[235]  Ross D. Shachter,et al.  Global Conditioning for Probabilistic Inference in Belief Networks , 1994, UAI.

[236]  David Heckerman,et al.  Learning Gaussian Networks , 1994, UAI.

[237]  Frank Jensen,et al.  From Influence Diagrams to junction Trees , 1994, UAI.

[238]  Frank Jensen,et al.  Optimal junction Trees , 1994, UAI.

[239]  Uffe Kjærulff,et al.  Reduction of Computational Complexity in Bayesian Networks Through Removal of Weak Dependences , 1994, UAI.

[240]  Zhaoyu Li,et al.  Efficient inference in Bayes networks as a combinatorial optimization problem , 1994, Int. J. Approx. Reason..

[241]  Pierre Baldi,et al.  Smooth On-Line Learning Algorithms for Hidden Markov Models , 1994, Neural Computation.

[242]  Andrew W. Moore,et al.  Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation , 1993, NIPS.

[243]  R. I. Bahar,et al.  Algebraic decision diagrams and their applications , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[244]  J. R. Rohlicek,et al.  ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition , 1993, IEEE Trans. Speech Audio Process..

[245]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[246]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[247]  David J. Spiegelhalter,et al.  Bayesian analysis in expert systems , 1993 .

[248]  Sampath Srinivas,et al.  A Generalization of the Noisy-Or Model , 1993, UAI.

[249]  Francisco Javier Díez,et al.  Parameter adjustment in Bayes networks. The generalized noisy OR-gate , 1993, UAI.

[250]  David Heckerman,et al.  Causal Independence for Knowledge Acquisition and Inference , 1993, UAI.

[251]  David Haussler,et al.  Using Dirichlet Mixture Priors to Derive Hidden Markov Models for Protein Families , 1993, ISMB.

[252]  D. Poole,et al.  MULTIPLY SECTIONED BAYESIAN NETWORKS AND JUNCTION FORESTS FOR LARGE KNOWLEDGE‐BASED SYSTEMS , 1993, Comput. Intell..

[253]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[254]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[255]  Kristian G. Olesen,et al.  Causal Probabilistic Networks with Both Discrete and Continuous Variables , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[256]  C. Bowler,et al.  Section 5(4) , 1993 .

[257]  R. Jennrich,et al.  Conjugate Gradient Acceleration of the EM Algorithm , 1993 .

[258]  S. Lauritzen Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models , 1992 .

[259]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[260]  Radford M. Neal Connectionist Learning of Belief Networks , 1992, Artif. Intell..

[261]  Robert P. Goldman,et al.  Probabilistic text understanding , 1992 .

[262]  Prakash P. Shenoy,et al.  Valuation-Based Systems for Bayesian Decision Analysis , 1992, Oper. Res..

[263]  F. Martinerie,et al.  Data association and tracking using hidden Markov models and dynamic programming , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[264]  Robert P. Goldman,et al.  From knowledge bases to decision models , 1992, The Knowledge Engineering Review.

[265]  A. P. Dawid,et al.  Applications of a general propagation algorithm for probabilistic expert systems , 1992 .

[266]  Uffe Kjærulff Optimal decomposition of probabilistic networks by simulated annealing , 1992 .

[267]  Michael P. Wellman,et al.  Planning and Control , 1991 .

[268]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[269]  Wray L. Buntine Theory Refinement on Bayesian Networks , 1991, UAI.

[270]  Prakash P. Shenoy,et al.  Local Computation in Hypertrees , 1991 .

[271]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[272]  Ross D. Shachter,et al.  Fusion and Propagation with Multiple Observations in Belief Networks , 1991, Artif. Intell..

[273]  David J. Spiegelhalter,et al.  Sequential updating of conditional probabilities on directed graphical structures , 1990, Networks.

[274]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[275]  James D. Hamilton Analysis of time series subject to changes in regime , 1990 .

[276]  Michael P. Wellman Fundamental Concepts of Qualitative Probabilistic Networks , 1990, Artif. Intell..

[277]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[278]  John E. Sussams,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[279]  Adolf D. May,et al.  Traffic Flow Fundamentals , 1989 .

[280]  Steen Andreassen,et al.  A munin network for the median nerve - a case study on loops , 1989, Appl. Artif. Intell..

[281]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[282]  N. Wermuth,et al.  Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .

[283]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[284]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[285]  Ross D. Shachter Probabilistic Inference and Influence Diagrams , 1988, Oper. Res..

[286]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[287]  Wray L. Buntine Decision tree induction systems: A Bayesian analysis , 1987, Int. J. Approx. Reason..

[288]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[289]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[290]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[291]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[292]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[293]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[294]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[295]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[296]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[297]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[298]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[299]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[300]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[301]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[302]  C. Cannings,et al.  Probability functions on complex pedigrees , 1978, Advances in Applied Probability.

[303]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[304]  Hiromitsu Kumamoto,et al.  Random sampling approach to state estimation in switching environments , 1977, Autom..

[305]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[306]  John B. Moore,et al.  Discrete-time fixed-lag smoothing algorithms , 1973 .

[307]  J. Meditch,et al.  Discrete-Time Fixed-Lag Smoothing, , 1970 .

[308]  M. Degroot Optimal Statistical Decisions , 1970 .

[309]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[310]  D. Fraser,et al.  The optimum linear smoother as a combination of two optimum linear filters , 1969 .

[311]  C. Chow,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[312]  Karl Johan Åström,et al.  Optimal control of Markov processes with incomplete state information , 1965 .

[313]  Paolo Giudici,et al.  Improving Markov Chain Monte Carlo Model Search for Data Mining , 2004, Machine Learning.

[314]  Yoshua Bengio,et al.  Markovian Models for Sequential Data , 2004 .

[315]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[316]  N. Zhang Irrelevance and Parameter Learning in Bayesian Networks , 2003 .

[317]  Alex Pentland,et al.  Discriminative, generative and imitative learning , 2002 .

[318]  Michael I. Jordan,et al.  A Hierarchical Bayesian Markovian Model for Motifs in Biopolymer Sequences , 2002, NIPS.

[319]  Andrew G. Barto,et al.  Optimal learning: computational procedures for bayes-adaptive markov decision processes , 2002 .

[320]  Pedro Larrañaga,et al.  An Introduction to Probabilistic Graphical Models , 2002, Estimation of Distribution Algorithms.

[321]  Michael O. Kolawole,et al.  Estimation and tracking , 2002 .

[322]  M. Eichler Markov properties for graphical time series models , 2002 .

[323]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[324]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[325]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[326]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[327]  T. Minka Inferring a Gaussian distribution , 2001 .

[328]  Walter R. Gilks,et al.  RESAMPLE-MOVE Filtering with Cross-Model Jumps , 2001, Sequential Monte Carlo Methods in Practice.

[329]  M. Opper,et al.  Tractable Approximate Belief Propagation , 2001 .

[330]  T. Dean,et al.  Representations and Algorithms for Large Stochastic Planning Problems , 2001 .

[331]  M. Opper,et al.  Comparing the Mean Field Method and Belief Propagation for Approximate Inference in MRFs , 2001 .

[332]  Daphne Koller,et al.  Sampling in Factored Dynamic Systems , 2001, Sequential Monte Carlo Methods in Practice.

[333]  M. Opper,et al.  Some Examples of Recursive Variational Approximations for Bayesian Inference , 2001 .

[334]  Kevin Humphreys,et al.  Some examples of recursive variational approximations for Bayesian inference , 2001 .

[335]  Dan Geiger,et al.  On Parameter Priors for Discrete DAG Models , 2001, AISTATS.

[336]  A. Yuille A Double-Loop Algorithm to Minimize the Bethe and Kikuchi Free Energies , 2001 .

[337]  R. Dechter,et al.  Up and Down Mini-Buckets: A Scheme for Approximating Combinatorial Optimization Tasks , 2001 .

[338]  M. Opper,et al.  Tutorial on Variational Approximation Methods , 2001 .

[339]  Peter J. Bickel,et al.  Day-to-Day Travel-Time Trends and Travel-Time Prediction from Loop-Detector Data , 2000 .

[340]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[341]  Yair Weiss,et al.  Correctness of Local Probability Propagation in Graphical Models with Loops , 2000, Neural Computation.

[342]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[343]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[344]  Nir Friedman,et al.  Discovering Hidden Variables: A Structure-Based Approach , 2000, NIPS.

[345]  Michael I. Jordan,et al.  Bayesian parameter estimation via variational methods , 2000, Stat. Comput..

[346]  Daphne Koller,et al.  Active Learning for Parameter Estimation in Bayesian Networks , 2000, NIPS.

[347]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[348]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[349]  F. Cozman,et al.  Generalizing variable elimination in Bayesian networks , 2000 .

[350]  Zoubin Ghahramani,et al.  Propagation Algorithms for Variational Bayesian Learning , 2000, NIPS.

[351]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[352]  David Heckerman,et al.  Dependency Networks for Density Estimation, Collaborative Filtering, and Data Visualization , 2000 .

[353]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[354]  Michael Hu,et al.  A Hierarchical HMM Implementation for Vertebrate Gene Splice Site Prediction , 2000 .

[355]  A. Raftery,et al.  Easy Estimation of Normalizing Constants and Bayes Factors from Posterior Simulation: Stabilizing the Harmonic Mean Estimator , 2000 .

[356]  Jaimyoung Kwon Modeling Freeway Traffic with Coupled HMMs , 2000 .

[357]  William T. Freeman,et al.  On the fixed points of the max-product algorithm , 2000 .

[358]  Claudia Tarantola,et al.  Efficient Model Determination for Discrete Graphical Models , 2000 .

[359]  Jeff A. Bilmes,et al.  Natural statistical models for automatic speech recognition , 1999 .

[360]  Vladimir Pavlovic,et al.  A dynamic Bayesian network approach to figure tracking using learned dynamic models , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[361]  Daphne Koller,et al.  Probabilistic reasoning for complex systems , 1999 .

[362]  Kevin Murphy,et al.  Bayes net toolbox for Matlab , 1999 .

[363]  Thomas P. Minka,et al.  From Hidden Markov Models to Linear Dynamical Systems , 1999 .

[364]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[365]  R. Dechter,et al.  On the impact of causal independence , 1998 .

[366]  Geoffrey Zweig,et al.  Speech Recognition with Dynamic Bayesian Networks , 1998, AAAI/IAAI.

[367]  J. Durbin,et al.  Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives , 1998 .

[368]  Daniel Nikovski,et al.  Learning Stationary Temporal Probabilistic Networks , 1998 .

[369]  K. Ppeger Categorical Boltzmann Machines , 1998 .

[370]  Kevin Murphy,et al.  Switching Kalman Filters , 1998 .

[371]  T. Silander,et al.  A Comparison of Non-informative Priors for Bayesian Networks , 1998 .

[372]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[373]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[374]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[375]  Frederick Jelinek,et al.  Statistical methods for speech recognition , 1997 .

[376]  Ross Morgan Curds,et al.  Propagation techniques in probabilistic expert systems , 1997 .

[377]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[378]  F. Hall TRAFFIC STREAM CHARACTERISTICS , 1997 .

[379]  Matthew Brand,et al.  Coupled hidden Markov models for modeling interacting processes , 1997 .

[380]  Andrew McCallum,et al.  Reinforcement learning with selective perception and hidden state , 1996 .

[381]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[382]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[383]  Michael I. Jordan,et al.  MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES , 1996 .

[384]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[385]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[386]  Zohar Manna,et al.  Temporal Verification of Reactive Systems , 1995, Springer New York.

[387]  Michael I. Jordan Why the logistic function? A tutorial discussion on probabilities and neural networks , 1995 .

[388]  Michael I. Jordan,et al.  Boltzmann Chains and Hidden Markov Models , 1994, NIPS.

[389]  Ann E. Nicholson,et al.  Dynamic Belief Networks for Discrete Monitoring , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[390]  Chang‐Jin Kim,et al.  Dynamic linear models with Markov-switching , 1994 .

[391]  Wray L. Buntine,et al.  Learning with Graphical Models , 1994 .

[392]  Uue Kjjrull Dhugin: a Computational System for Dynamic Time-sliced Bayesian Networks E Dhugin: a Computational System for Dynamic Time-sliced Bayesian Networks , 1994 .

[393]  Radford M. Neal A new view of the EM algorithm that justifies incremental and other variants , 1993 .

[394]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[395]  Frederick Jelinek,et al.  Basic Methods of Probabilistic Context Free Grammars , 1992 .

[396]  Judea Pearl,et al.  A Theory of Inferred Causation , 1991, KR.

[397]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[398]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[399]  Uue Kjjrull Triangulation of Graphs { Algorithms Giving Small Total State Space Triangulation of Graphs { Algorithms Giving Small Total State Space , 1990 .

[400]  Prakash P. Shenoy,et al.  Probability propagation , 1990, Annals of Mathematics and Artificial Intelligence.

[401]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[402]  Y. Bar-Shalom Tracking and data association , 1988 .

[403]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .