Arrows Pointing at Arrows: Arrow Logic, Relevance Logic, and Relation Algebras

Richard Routley and Robert K. Meyer introduced a ternary relational semantics for various relevance logics in the early 1970s. Johan van Benthem and Yde Venema introduced “arrow logic” in the early 1990s and about the same time I showed how a variation of the Routley–Meyer semantics could be used to provide an interpretation of Tarski’s axioms for relation algebras. In this paper I explore the relationships between the van Benthem–Venema semantics for arrow logics, and the Routley–Meyer semantics for relevance logic, and conclude with a comparison between van Benthem’s version of the semantics for arrow logic aimed at relation algebras, and my own version of the Routley–Meyer semantics which I used to give a representation of relation algebras (but at a type level higher than Tarski’s original intended interpretation of an element as a relation, for me it is a set of relations). In the process I show how van Benthem’s semantics for arrow logic can be just slightly tweaked (just one additional constraint) so as to give a representation of relation algebras.

[1]  J. Michael Dunn,et al.  Gaggle Theory: An Abstraction of Galois Connections and Residuation with Applications to Negation, Implication, and Various Logical Operations , 1990, JELIA.

[2]  Alasdair Urquhart Katalin Bimbó and J. Michael Dunn. Relational semantics of nonclassical logical calculi. CSLI Lecture Notes, no. 188. CSLI Publications, Stanford University, 2008, x + 382 pp. , 2010, The Bulletin of Symbolic Logic.

[3]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[4]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[5]  Robert K. Meyer,et al.  New axiomatics for relevant logics, I , 1974, J. Philos. Log..

[6]  Johan van Benthem,et al.  Language in action , 1991, J. Philos. Log..

[7]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[8]  R. Meyer,et al.  The semantics of entailment — III , 1973 .

[9]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[10]  B. Jack Copeland,et al.  On when a semantics is not a semantics: Some reasons for disliking the Routley-Meyer semantics for relevance logic , 1979, J. Philos. Log..

[11]  maarten marx Algebraic Relativization and Arrow Logic , 1995 .

[12]  Katalin Bimbó,et al.  Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi , 2008 .

[13]  Edwin D. Mares,et al.  A star-free semantics for R , 1995, Journal of Symbolic Logic.

[14]  Greg Restall,et al.  Defining Double Negation Elimination , 2000, Log. J. IGPL.

[15]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[16]  Y. Venema A crash course in arrow logic , 1994 .

[17]  Szabolcs Mikulás,et al.  Algebras of Relations and Relevance Logic , 2009, J. Log. Comput..

[18]  R. Lyndon THE REPRESENTATION OF RELATIONAL ALGEBRAS , 1950 .

[19]  Johan van Benthem,et al.  Review: B. J. Copeland, On When a Semantics is not a Semantics: Some Reasons for Disliking the Routley-Meyer Semantics for Relevance Logic , 1984 .

[20]  Vaughan R. Pratt,et al.  Action Logic and Pure Induction , 1990, JELIA.

[21]  Allen P. Hazen,et al.  On the Ternary Relation and Conditionality , 2012, J. Philos. Log..

[22]  B. Jack Copeland,et al.  The Genesis of Possible Worlds Semantics , 2002, J. Philos. Log..

[23]  Katalin Bimbó,et al.  Relational Semantics for Kleene Logic and Action Logic , 2005, Notre Dame J. Formal Log..

[24]  Katalin Bimbó,et al.  RELEVANCE LOGICS AND RELATION ALGEBRAS , 2009, The Review of Symbolic Logic.

[25]  Roger D. Maddux,et al.  RELEVANCE LOGIC AND THE CALCULUS OF RELATIONS , 2010, The Review of Symbolic Logic.

[26]  J. Michael Dunn,et al.  A Representation of Relation Algebras Using Routley-Meyer Frames , 2001 .

[27]  J. Michael Dunn,et al.  Relevance Logic and Entailment , 1986 .

[28]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[29]  Robert K. Meyer,et al.  Combinators and Structurally Free Logic , 1997, Log. J. IGPL.

[30]  Jan van Eijck,et al.  Logic and Information Flow , 1994 .

[31]  Johan van Benthem,et al.  A note on dynamic arrow logic , 1994 .

[32]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[33]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[34]  Robert Goldblatt,et al.  Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..

[35]  Richard Sylvan,et al.  The semantics of entailment—II , 1972, Journal of Philosophical Logic.