Single Crystalline Boron Nanocones: Electric Transport and Field Emission Properties
暂无分享,去创建一个
Fei Liu | Chao Hui | Ningsheng Xu | Changzhi Gu | L. Bao | C. Hui | H. Gao | Hong-Jun Gao | Lihong Bao | Jifa Tian | Tianzhong Yang | Chengmin Shen | N. Xu | Xingjun Wang | X. J. Wang | J. Tian | C. Shen | F. Liu | T. Yang | Chao Hui | Lihong Bao | Xing-Jun Wang | Ji-Fa Tian | Tian-Zhong Yang | Cheng-Min Shen | Ningsheng Xu | Hong-Jun Gao | Fei Liu | Changzhi Gu
[1] R. Ma,et al. High purity single crystalline boron carbide nanowires , 2002 .
[2] Kenji Kawaguchi,et al. Temperature dependence of electrical conductance in single-crystalline boron nanobelts , 2005 .
[3] Zhichuan J. Xu,et al. Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties. , 2005, The journal of physical chemistry. B.
[4] J. M. Cowley,et al. Crystalline boron nanowires. , 2002, Journal of the American Chemical Society.
[5] Judy Z. Wu,et al. Effect of quench on crystallinity and alignment of boron nanowires , 2004 .
[6] Lihuan Sun,et al. Well‐Aligned Boron Nanowire Arrays , 2001 .
[7] K. Hellwege,et al. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .
[8] Vlado I. Matkovich,et al. Boron and Refractory Borides , 1977 .
[9] Dmitri Golberg,et al. Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires , 2003 .
[10] Yiying Wu,et al. Superconducting MgB2 Nanowires , 2001 .
[11] R. Stratton,et al. Field Emission from Semiconductors , 1955 .
[12] Ulf O. Karlsson,et al. Growth of inclined boron nanowire bundle arrays in an oxide-assisted vapor-liquid-solid process , 2005 .
[13] R. Bechmann,et al. Numerical data and functional relationships in science and technology , 1969 .
[14] Zengxing Zhang,et al. Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays. , 2006, The journal of physical chemistry. B.
[15] Daihua Zhang,et al. Electronic transport studies of single-crystalline In2O3 nanowires , 2003 .
[16] Sungho Jin,et al. In situ-grown carbon nanotube array with excellent field emission characteristics , 2000 .
[17] G. J. McCarthy,et al. JCPDS-International Centre for Diffraction Data , 1981 .
[18] Dekker,et al. High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.
[19] Rodney S. Ruoff,et al. Crystalline Boron Nanoribbons: Synthesis and Characterization , 2004 .
[20] Quanshun Li,et al. Current saturation in multiwalled carbon nanotubes by large bias , 2004 .
[21] M. Yumura,et al. Synthesis of crystalline boron nanowires by laser ablation. , 2002, Chemical communications.
[22] W. Heywang. Bariumtitanat als sperrschichthalbleiter , 1961 .
[23] J. Frutos,et al. Bulk-grain resistivity and positive temperature coefficient of ZnO-based varistors , 2003 .
[24] J. A. Kohn,et al. Boron Synthesis, Structure, and Properties , 1960 .
[25] Kenji Kawaguchi,et al. Catalyst-free fabrication of single crystalline boron nanobelts by laser ablation , 2003 .
[26] W. Wang,et al. Featherlike boron nanowires arranged in large-scale arrays with multiple nanojunctions , 2002 .
[27] A. Quandt,et al. Nanotubules of bare boron clusters: Ab initio and density functional study , 1997 .
[28] Chun-Sing Lee,et al. Boron nanowires synthesized by laser ablation at high temperature , 2003 .
[29] Y. Wang,et al. One-dimensional growth mechanism of amorphous boron nanowires , 2002 .
[30] Daihua Zhang,et al. In2O3 nanowires as chemical sensors , 2003 .
[31] Satoshi Ohshima,et al. Study of the growth of boron nanowires synthesized by laser ablation , 2004 .
[32] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[33] William E. Buhro,et al. Electrical transport in boron nanowires , 2003 .
[34] Xiao Wei Sun,et al. Field emission from zinc oxide nanopins , 2003 .
[35] Angel Rubio,et al. New boron based nanostructured materials , 1999 .
[36] Q. Wan,et al. Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires , 2005 .