Single Crystalline Boron Nanocones: Electric Transport and Field Emission Properties

Single crystalline boron nanocones are obtained by a simple chemical vapor deposition method. Electric conductivity values of boron nanocones are (1.0-7.3) x 10(-5) (Omega cm)(-1). Results of field emission show the low turn-on and threshold electric fields of about 3.5 V mu m(-1) and 5.3 V mu m(-1), respectively. Boron nanocones with good electrical transport and field emission properties are promising candidates for application in flat panel displays and nanoelectronics building blocks.

[1]  R. Ma,et al.  High purity single crystalline boron carbide nanowires , 2002 .

[2]  Kenji Kawaguchi,et al.  Temperature dependence of electrical conductance in single-crystalline boron nanobelts , 2005 .

[3]  Zhichuan J. Xu,et al.  Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties. , 2005, The journal of physical chemistry. B.

[4]  J. M. Cowley,et al.  Crystalline boron nanowires. , 2002, Journal of the American Chemical Society.

[5]  Judy Z. Wu,et al.  Effect of quench on crystallinity and alignment of boron nanowires , 2004 .

[6]  Lihuan Sun,et al.  Well‐Aligned Boron Nanowire Arrays , 2001 .

[7]  K. Hellwege,et al.  Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .

[8]  Vlado I. Matkovich,et al.  Boron and Refractory Borides , 1977 .

[9]  Dmitri Golberg,et al.  Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires , 2003 .

[10]  Yiying Wu,et al.  Superconducting MgB2 Nanowires , 2001 .

[11]  R. Stratton,et al.  Field Emission from Semiconductors , 1955 .

[12]  Ulf O. Karlsson,et al.  Growth of inclined boron nanowire bundle arrays in an oxide-assisted vapor-liquid-solid process , 2005 .

[13]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[14]  Zengxing Zhang,et al.  Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays. , 2006, The journal of physical chemistry. B.

[15]  Daihua Zhang,et al.  Electronic transport studies of single-crystalline In2O3 nanowires , 2003 .

[16]  Sungho Jin,et al.  In situ-grown carbon nanotube array with excellent field emission characteristics , 2000 .

[17]  G. J. McCarthy,et al.  JCPDS-International Centre for Diffraction Data , 1981 .

[18]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[19]  Rodney S. Ruoff,et al.  Crystalline Boron Nanoribbons: Synthesis and Characterization , 2004 .

[20]  Quanshun Li,et al.  Current saturation in multiwalled carbon nanotubes by large bias , 2004 .

[21]  M. Yumura,et al.  Synthesis of crystalline boron nanowires by laser ablation. , 2002, Chemical communications.

[22]  W. Heywang Bariumtitanat als sperrschichthalbleiter , 1961 .

[23]  J. Frutos,et al.  Bulk-grain resistivity and positive temperature coefficient of ZnO-based varistors , 2003 .

[24]  J. A. Kohn,et al.  Boron Synthesis, Structure, and Properties , 1960 .

[25]  Kenji Kawaguchi,et al.  Catalyst-free fabrication of single crystalline boron nanobelts by laser ablation , 2003 .

[26]  W. Wang,et al.  Featherlike boron nanowires arranged in large-scale arrays with multiple nanojunctions , 2002 .

[27]  A. Quandt,et al.  Nanotubules of bare boron clusters: Ab initio and density functional study , 1997 .

[28]  Chun-Sing Lee,et al.  Boron nanowires synthesized by laser ablation at high temperature , 2003 .

[29]  Y. Wang,et al.  One-dimensional growth mechanism of amorphous boron nanowires , 2002 .

[30]  Daihua Zhang,et al.  In2O3 nanowires as chemical sensors , 2003 .

[31]  Satoshi Ohshima,et al.  Study of the growth of boron nanowires synthesized by laser ablation , 2004 .

[32]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[33]  William E. Buhro,et al.  Electrical transport in boron nanowires , 2003 .

[34]  Xiao Wei Sun,et al.  Field emission from zinc oxide nanopins , 2003 .

[35]  Angel Rubio,et al.  New boron based nanostructured materials , 1999 .

[36]  Q. Wan,et al.  Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires , 2005 .