Effects of thickness and V/III ratio of low temperature capping layer growth to the optical properties of InAs quantum dots

To achieve increased device performance, the authors systematically explored the dependence of the optical characteristics of InAs quantum dot (QD) ensembles grown via molecular beam epitaxy with different V/III ratios and thicknesses of the low temperature GaAs capping layers. In addition, the paper discusses the mechanism behind the dependence. Experiments showed the QD optical properties were significantly dependent on the GaAs capping layer V/III ratio and the initial GaAs capping layer thickness. An optimized V/III ratio and GaAs capping thickness is reported.

[1]  Toshio Katsuyama,et al.  Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 μm , 2015, Nanoscale Research Letters.

[2]  Dongyoung Kim,et al.  Effect of rapid thermal annealing on InAs/GaAs quantum dot solar cells , 2015 .

[3]  Y. Sugimoto,et al.  Growth of InAs/GaAs quantum dots with central emission wavelength of 1.05 μm using In-flush technique for broadband near-infrared light source , 2013 .

[4]  Takeo Kageyama,et al.  Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission , 2013 .

[5]  K. Nishi,et al.  Growth of high-density 1.06-μm InGaAs/GaAs quantum dots for high gain lasers by molecular beamepitaxy , 2013 .

[6]  D. Poitras,et al.  Ultrawide-bandwidth, superluminescent light-emitting diodes using InAs quantum dots of tuned height. , 2012, Optics letters.

[7]  D. Poitras,et al.  Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots , 2010 .

[8]  D. Poitras,et al.  Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: A new approach in controlling the bandwidth , 2009 .

[9]  Juerg Leuthold,et al.  Systematic investigation into the influence of growth conditions on InAs/GaAs quantum dot properties , 2007 .

[10]  Antonio Luque,et al.  Novel semiconductor solar cell structures : The quantum dot intermediate band solar cell , 2006 .

[11]  K. Yamaguchi,et al.  High quality InAs quantum dots covered by InGaAs/GaAs hetero‐capping layer , 2003 .

[12]  C. Heyn Stability of InAs quantum dots , 2002 .

[13]  S. Moisa,et al.  INAS/GAAS(100) SELF-ASSEMBLED QUANTUM DOTS, ARSENIC PRESSURE AND CAPPING EFFECTS , 2002 .

[14]  Huiyun Liu,et al.  Effects of interdiffusion on the luminescence of InAs/GaAs quantum dots covered by InGaAs overgrowth layer , 2000 .

[15]  Nikolai N. Ledentsov,et al.  Quantum dot lasers: breakthrough in optoelectronics , 2000 .

[16]  Z. R. Wasilewski,et al.  Size and shape engineering of vertically stacked self-assembled quantum dots , 1999 .

[17]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .

[18]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[19]  N. Ledentsov,et al.  Quantum dot heterostructures: Fabrication, properties, lasers (Review) , 1998 .

[20]  Axel Lorke,et al.  Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .

[21]  K. Ploog,et al.  Contribution of reflection high-energy electron diffraction to nanometre tailoring of surfaces and interfaces by molecular beam epitaxy , 1994 .

[22]  Ryoichi Ito,et al.  Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells , 1992 .

[23]  R. Fernandez Reproducible growth conditions by group III and group V controlled incorporation rate measurements , 1988 .

[24]  W. T. Moore,et al.  Measurement of GaAs surface oxide desorption temperatures , 1987 .

[25]  B. Joyce,et al.  Dynamic RHEED observations of the MBE growth of GaAs , 1984 .