Quadrupolar excitons in a tunnel-coupled van der Waals heterotrilayer

Weijie Li*,1 Zach Hadjri*,1 Jin Zhang*,2 Luka M. Devenica*,1 Song Liu,3 James Hone,3 Kenji Watanabe,4 Takashi Taniguchi,5 Angel Rubio,2, 6, 7 and Ajit Srivastava†1 1Department of Physics, Emory University, 30322 Atlanta, Georgia, USA 2Center for Free Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany 3Department of Mechanical Engineering, Columbia University, 10027 New York, New York, USA 4Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 5International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 6Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, 10010 New York, New York, USA 7Nano-BioSpectroscopy Group, Departamento de Fisica de Materiales, Universidad del Paı́s Vasco, 20018 San Sebastián, Spain

[1]  Kenji Watanabe,et al.  Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure , 2021, Nature photonics.

[2]  M. Szymańska,et al.  First-order dissipative phase transition in an exciton-polariton condensate , 2021, Physical Review B.

[3]  S. Forrest,et al.  Van der Waals heterostructure polaritons with moiré-induced nonlinearity , 2021, Nature.

[4]  A. Ferrari,et al.  Efficient phonon cascades in WSe2 monolayers , 2021, Nature Communications.

[5]  I. L. Kurbakov,et al.  Quantum phase transition of a two-dimensional quadrupolar system , 2020, 2012.14008.

[6]  J. Hone,et al.  Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2 , 2019, Nature Communications.

[7]  A. Srivastava,et al.  Optical control of the valley Zeeman effect through many-exciton interactions , 2020, Nature Nanotechnology.

[8]  Zongwen Liu,et al.  Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. , 2020, Optics express.

[9]  R. Rapaport,et al.  Quantum Phase Transitions of Trilayer Excitons in Atomically Thin Heterostructures. , 2020, Physical review letters.

[10]  T. Taniguchi,et al.  Strongly correlated electrons and hybrid excitons in a moiré heterostructure , 2020, Nature.

[11]  Luka M. Devenica,et al.  Dipolar interactions between localized interlayer excitons in van der Waals heterostructures , 2019, Nature Materials.

[12]  B. Gerardot,et al.  Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface , 2019, npj 2D Materials and Applications.

[13]  A. Imamoğlu,et al.  Interacting Polaron-Polaritons , 2019, Physical Review X.

[14]  Juwon Lee,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[15]  C. Shih,et al.  Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin , 2019, Science Advances.

[16]  B. Shklovskii,et al.  Attraction of indirect excitons in van der Waals heterostructures with three semiconducting layers , 2019, Physical Review B.

[17]  S. Louie,et al.  Valley-dependent exciton fine structure and Autler–Townes doublets from Berry phases in monolayer MoSe2 , 2018, Nature Materials.

[18]  M. Lukin,et al.  Electrical control of interlayer exciton dynamics in atomically thin heterostructures , 2018, Science.

[19]  Kenji Watanabe,et al.  Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures , 2018, Nature Photonics.

[20]  J. Shan,et al.  Electrical Tuning of Interlayer Exciton Gases in WSe2 Bilayers. , 2017, Nano letters.

[21]  A. Kis,et al.  Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure. , 2017, Nano letters.

[22]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[23]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[24]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[25]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[26]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[27]  B. V. van Wees,et al.  Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride , 2014, 1403.0399.

[28]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[29]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[30]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.