Physical Reasoning

Publisher Summary An intelligent creature or automaton that is set in a complex uncontrolled world will be able to act more effectively and flexibly if it understands the physical laws governing its surroundings and their relation to its own actions and the actions of other agents. This chapter discusses the work of KR researchers that tries to represent commonsense knowledge and carry out commonsense reasoning over some basic physical domains. There is a vast body of computer science and scientific computing that deals in one way or another with physical phenomena; almost all of this lies outside the scope of KR research and, hence, of this chapter. Even within artificial intelligence (AI), there are many types of physical reasoning that are excluded. For instance, the automated visual recognition of a scene is, in a sense, a type of physical reasoning. Image formation is a physical process; the problem in vision is to infer plausible characteristics of a scene given an image of it. This is not considered a problem for KR physical reasoning because the physics involved is too specialized. A single, quite complex, physical process and a single type of inference about the process are at issue; the computational techniques to be applied are highly tuned to that process and inference, and they hardly generalize to any other kind of problem.

[1]  Scott E. Fahlman,et al.  A Planning System for Robot Construction Tasks , 1973, Artif. Intell..

[2]  D. Bobrow Qualitative Reasoning about Physical Systems , 1985 .

[3]  Anthony G. Cohn,et al.  Describing Rigid Body Motions in a Qualitative Theory of Spatial Regions , 2000, AAAI/IAAI.

[4]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[5]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[6]  Laurent Siklóssy,et al.  Breadth-First Search: Some Surprising Results , 1973, Artif. Intell..

[7]  J. Brown,et al.  A Qualitative Physics Based on Confluences , 1984, Artif. Intell..

[8]  Thomas F. Stahovich,et al.  Qualitative rigid-body mechanics , 1997, Artif. Intell..

[9]  Kenneth D. Forbus,et al.  Reasoning about Fluids via Molecular Collections , 1987, AAAI.

[10]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[11]  Leo Joskowicz,et al.  Computational Kinematics , 1991, Artif. Intell..

[12]  Leo Joskowicz,et al.  Automated modeling and kinematic simulation of mechanisms , 1993, Comput. Aided Des..

[13]  Hyeonkyeong Kim,et al.  Qualitative reasoning about fluids and mechanics , 1993 .

[14]  Kenneth D. Forbus,et al.  Qualitative Spatial Reasoning: The Clock Project , 1991, Artif. Intell..

[15]  Bruce G. Buchanan,et al.  Heuristic DENDRAL - A program for generating explanatory hypotheses in organic chemistry. , 1968 .

[16]  Erik Sandewall,et al.  Combining Logic and Differential Equations for Describing Real-World Systems , 1989, KR.

[17]  J. Davenport Editor , 1960 .

[18]  Sanjaya Addanki,et al.  Reasoning About Assumptions in Graphs of Models , 1989, IJCAI.

[19]  James G. Schmolze Physics for Robots , 1986, AAAI.

[20]  Leo Joskowicz,et al.  Dynamical simulation of planar systems with changing contacts using configuration spaces , 1998 .

[21]  Leo Joskowicz Simplification and Abstraction of Kinematic Behaviors , 1989, IJCAI.

[22]  Steffen Staab,et al.  Project Halo: Towards a Digital Aristotle , 2004, AI Mag..

[23]  Ernest Davis,et al.  Naive Physics Perplex , 1997, AI Mag..

[24]  Daniel S. Weld Approximation Reformulations , 1990, AAAI.

[25]  Gerald Jay Sussman,et al.  CONSTRAINTS - A Language for Expressing Almost-Hierarchical Descriptions , 1980, Artif. Intell..

[26]  I. I. Artobolevskiĭ Mechanisms in modern engineering design , 1975 .

[27]  P. Pandurang Nayak,et al.  A Semantic Theory of Abstractions , 1995, IJCAI.

[28]  P. Pandurang Nayak,et al.  Causal Approximations , 1992, Artif. Intell..

[29]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[30]  Russell H. Taylor,et al.  Interference-Free Insertion of a Solid Body Into a Cavity: An Algorithm and a Medical Application , 1996, Int. J. Robotics Res..

[31]  Brian V. Funt,et al.  Problem-Solving with Diagrammatic Representations , 1980, Artif. Intell..

[32]  Benjamin Kuipers,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, Autom..

[33]  Konstantinos J Dryllerakis,et al.  Qualitative Reasoning about Physical Systems , 2007 .

[34]  Robert C. Moore,et al.  Formal Theories of the Commonsense World , 1985 .

[35]  Ernest Davis,et al.  Axiomatizing Qualitative Process Theory , 2011, KR.

[36]  Ernest Davis Approximations of Shape and Configuration Space , 1995 .

[37]  Daniel S. Weld Reasoning about Model Accuracy , 1992, Artif. Intell..

[38]  Leo Joskowicz,et al.  Kinematic tolerance analysis , 1997, Comput. Aided Des..

[39]  Steffen Staab,et al.  Towards a Quantitative, Platform-Independent Analysis of Knowledge Systems , 2004, KR.

[40]  Johan de Kleer,et al.  Readings in qualitative reasoning about physical systems , 1990 .

[41]  Andrew Gelsey Automated Reasoning About Machines , 1995, Artif. Intell..

[42]  Brian Falkenhainer,et al.  Ideal Physical Systems , 1993, AAAI.

[43]  Alex S. Taylor,et al.  Machine intelligence , 2009, CHI.

[44]  Raman Rajagopalan A Model for Integrated Qualitative Spatial and Dynamic Reasoning about Physical Systems , 1994, AAAI.

[45]  Johan de Kleer,et al.  A Qualitative Physics Confluences , 1984 .

[46]  Leo Joskowicz Shape and Function in Mechanical Devices , 1987, AAAI.

[47]  Sheila A. McIlraith,et al.  Towards a practical theory of reformulation for reasoning about physical systems , 2005, Artif. Intell..

[48]  E. Davis Approximation and Abstraction in Solid Object Kinematics , 1995 .

[49]  Theodore L. Brown Chemistry: The Central Science , 1981 .

[50]  Murray Shanahan,et al.  Default Reasoning about Spatial Occupancy , 1995, Artif. Intell..

[51]  Ernest Davis The kinematics of cutting solid objects , 2005, Annals of Mathematics and Artificial Intelligence.

[52]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[53]  Boi Faltings Qualitative Kinematics in Mechanisms , 1987, IJCAI.

[54]  Leora Morgenstern,et al.  Mid-Sized Axiomatizations of Commonsense Problems: A Case Study in Egg Cracking , 2001, Stud Logica.

[55]  Paul Nielsen A Qualitative Approach to Mechanical Constraint , 1988, AAAI.

[56]  Ernest Davis,et al.  A logical framework for commonsense predictions of solid object behaviour , 1988, Artif. Intell. Eng..

[57]  Patrick J. Hayes,et al.  The Naive Physics Manifesto , 1990, The Philosophy of Artificial Intelligence.

[58]  Kenneth D. Forbus Spatial and Qualitative Aspects of Reasoning about Motion , 1980, AAAI.

[59]  Andrew Gelsey Automated Reasoning about Machine Geometry and Kinematics , 1989 .

[60]  Leo Joskowicz,et al.  From Kinematics to Shape: An Approach to Innovative Design , 1988, AAAI.

[61]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[62]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artificial Intelligence.

[63]  Murray Shanahan,et al.  An attempt to formalise a non-trivial benchmark problem in common sense reasoning , 2004, Artif. Intell..

[64]  Fausto Giunchiglia,et al.  A Theory of Abstraction , 1992, Artif. Intell..

[65]  Johan de Kleer Multiple Representations of Knowledge in a Mechanics Problem-Solver , 1977, IJCAI.

[66]  Johan de Kleer,et al.  A Qualitative Physics Based on Confluences , 1984, Artif. Intell..

[67]  E. Haug,et al.  Dynamic Analysis of Mechanical Systems With Intermittent Motion , 1982 .

[68]  I. Artobolevsky Mechanisms in Modern Engineering Design , 1979 .

[69]  Bernard Meltzer,et al.  Analogical Representations of Naive Physics , 1989, Artif. Intell..