Exploring non-signalling polytopes with negative probability

Bipartite and tripartite EPR–Bell type systems are examined via joint quasi-probability distributions where probabilities are permitted to be negative. It is shown that such distributions exist only when the no-signalling condition is satisfied. A characteristic measure, the probability mass, is introduced and, via its minimization, limits the number of quasi-distributions describing a given marginal probability distribution. The minimized probability mass is shown to be an alternative way to characterize non-local systems. Non-signalling polytopes for two to eight settings in the bipartite scenario are examined and compared to prior work. Examining perfect cloning of non-local systems within the tripartite scenario suggests defining two categories of signalling. It is seen that many properties of non-local systems can be efficiently described by quasi-probability theory.

[1]  Jean-Pierre Vigier,et al.  A review of extended probabilities , 1986 .

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  J. Acacio de Barros,et al.  Quantum-like model of behavioral response computation using neural oscillators , 2012, Biosyst..

[4]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  J. S. Wood,et al.  Statistical interpretation of p-adic-valued quantum field theory , 1993 .

[6]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[7]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[8]  Samson Abramsky,et al.  An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.

[9]  W. Hwang,et al.  Explicit solutions for negative-probability measures for all entangled states , 1996 .

[10]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[11]  Raymond Kapral,et al.  Quantum dynamics in open quantum-classical systems , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[13]  Ehtibar N. Dzhafarov,et al.  No-Forcing and No-Matching Theorems for Classical Probability Applied to Quantum Mechanics , 2014 .

[14]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[15]  Ehtibar N. Dzhafarov,et al.  Measuring Observable Quantum Contextuality , 2015, QI.

[16]  Hidden Variables or Positive Probabilities? , 2000, quant-ph/0004109.

[17]  K. Svozil,et al.  Optimal tests of quantum nonlocality , 2000, quant-ph/0011060.

[18]  Ehtibar N. Dzhafarov,et al.  Unifying Two Methods of Measuring Quantum Contextuality , 2014 .

[19]  Gary Oas,et al.  Negative probabilities and counter-factual reasoning in quantum cognition , 2014, 1404.3921.

[20]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[21]  N. Gisin,et al.  A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.

[22]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[23]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[24]  Anthony J Short,et al.  Simulating all nonsignaling correlations via classical or quantum theory with negative probabilities. , 2013, Physical review letters.

[25]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[26]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[27]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[28]  J. Acacio de Barros,et al.  Joint probabilities and quantum cognition , 2012, 1206.6706.

[29]  P. Suppes,et al.  Quantum Mechanics and the Brain , 2007 .

[30]  A. Khrennikov On negative probabilities. , 2007 .

[31]  Andreas Blass,et al.  Negative probability , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Patrick Suppes,et al.  Phase-oscillator computations as neural models of stimulus–response conditioning and response selection ☆ , 2010, 1010.3063.

[33]  Bell-type inequalities for nonlocal resources , 2006, quant-ph/0603094.

[34]  Ehtibar N. Dzhafarov,et al.  Contextuality is about identity of random variables , 2014, 1405.2116.

[35]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[36]  I. Pitowsky Quantum Probability ― Quantum Logic , 1989 .

[37]  J. Yearsley,et al.  Negative probabilities, Fine's theorem, and linear positivity , 2013 .

[38]  Jose Acacio de Barros,et al.  Decision Making for Inconsistent Expert Judgments Using Negative Probabilities , 2013, QI.

[39]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .