Graph structure via local occupancy

The first author together with Jenssen, Perkins and Roberts (2017) recently showed how local properties of the hard-core model on triangle-free graphs guarantee the existence of large independent sets, of size matching the best-known asymptotics due to Shearer (1983). The present work strengthens this in two ways: first, by guaranteeing stronger graph structure in terms of colourings through applications of the Lovasz local lemma; and second, by extending beyond triangle-free graphs in terms of local sparsity, treating for example graphs of bounded local edge density, of bounded local Hall ratio, and of bounded clique number. This generalises and improves upon much other earlier work, including that of Shearer (1995), Alon (1996) and Alon, Krivelevich and Sudakov (1999), and more recent results of Molloy (2019), Bernshteyn (2019) and Achlioptas, Iliopoulos and Sinclair (2019). Our results derive from a common framework built around the hard-core model. It pivots on a property we call local occupancy, giving a clean separation between the methods for deriving graph structure with probabilistic information and verifying the requisite probabilistic information itself.

[1]  Matthew Jenssen,et al.  On kissing numbers and spherical codes in high dimensions , 2018, Advances in Mathematics.

[2]  Alistair Sinclair,et al.  Beyond the Lovász Local Lemma: Point to Set Correlations and Their Algorithmic Applications , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[3]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[4]  Rémi de Joannis de Verclos,et al.  Occupancy fraction, fractional colouring, and triangle fraction , 2018, ArXiv.

[5]  Noga Alon Independence numbers of locally sparse graphs and a Ramsey type problem , 1996, Random Struct. Algorithms.

[6]  Hsin-Hao Su,et al.  Distributed coloring algorithms for triangle-free graphs , 2015, Inf. Comput..

[7]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[8]  Luke Postle,et al.  Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 , 2015, J. Comb. Theory B.

[9]  Tom Bohman,et al.  Dynamic concentration of the triangle‐free process , 2013, Random Struct. Algorithms.

[10]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[11]  Stéphan Thomassé,et al.  Separation Choosability and Dense Bipartite Induced Subgraphs , 2018, Combinatorics, Probability and Computing.

[12]  Robert Morris,et al.  The Triangle-Free Process and the Ramsey Number 𝑅(3,𝑘) , 2020 .

[13]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[14]  Luke Postle,et al.  Bounding $\chi$ by a fraction of $\Delta$ for graphs without large cliques , 2018 .

[15]  PETER NELSON,et al.  BOUNDING χ BY A FRACTION OF ∆ FOR GRAPHS WITHOUT LARGE CLIQUES , 2018 .

[16]  P. D. Mendez,et al.  1-Subdivisions, the Fractional Chromatic Number and the Hall Ratio , 2018, Combinatorica.

[17]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[18]  Jeong Han Kim On Brooks' Theorem for Sparse Graphs , 1995, Comb. Probab. Comput..

[19]  B. Roberts,et al.  On the average size of independent sets in triangle-free graphs , 2016, 1606.01043.

[20]  János Komlós,et al.  A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..

[21]  WILL PERKINS,et al.  ON THE HARD SPHERE MODEL AND SPHERE PACKINGS IN HIGH DIMENSIONS , 2019, Forum of Mathematics, Sigma.

[22]  Anton Bernshteyn,et al.  The Johansson‐Molloy theorem for DP‐coloring , 2017, Random Struct. Algorithms.

[23]  Van H. Vu,et al.  A General Upper Bound on the List Chromatic Number of Locally Sparse Graphs , 2002, Combinatorics, Probability and Computing.

[24]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[25]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[26]  Aravind Srinivasan,et al.  Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds , 1997, SIAM J. Comput..

[27]  N. Alon Restricted colorings of graphs , 1993 .

[28]  Nikhil Bansal,et al.  On the Lovász Theta function for Independent Sets in Sparse Graphs , 2015, STOC.

[29]  Andrew D. King Claw-free graphs and two conjectures on omega, delta, and chi , 2009 .

[30]  P. Erdös Some remarks on the theory of graphs , 1947 .

[31]  James B. Shearer,et al.  On the Independence Number of Sparse Graphs , 1995, Random Struct. Algorithms.

[32]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[33]  David G. Harris Some Results on Chromatic Number as a Function of Triangle Count , 2019, SIAM J. Discret. Math..

[34]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[35]  Rémi de Joannis de Verclos,et al.  Coloring triangle‐free graphs with local list sizes , 2020, Random Struct. Algorithms.

[36]  Noga Alon,et al.  Coloring Graphs with Sparse Neighborhoods , 1999, J. Comb. Theory B.

[37]  Ryan R. Martin,et al.  Counterexamples to a Conjecture of Harris on Hall Ratio , 2018, SIAM J. Discret. Math..

[38]  Penny Haxell,et al.  A Note on Vertex List Colouring , 2001, Combinatorics, Probability and Computing.

[39]  Will Perkins,et al.  Independent sets, matchings, and occupancy fractions , 2015, J. Lond. Math. Soc..

[40]  Rémi de Joannis de Verclos,et al.  Bipartite induced density in triangle-free graphs , 2020, Electron. J. Comb..

[41]  Anton Bernshteyn,et al.  The asymptotic behavior of the correspondence chromatic number , 2016, Discret. Math..

[42]  Ross J. Kang,et al.  An algorithmic framework for colouring locally sparse graphs , 2020, ArXiv.

[43]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[44]  Béla Bollobás,et al.  The independence ratio of regular graphs , 1981 .

[45]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[46]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[47]  A. V. Kostov cka,et al.  An estimate in the theory of graph coloring , 1977 .

[48]  Michael Molloy,et al.  The list chromatic number of graphs with small clique number , 2017, J. Comb. Theory B.

[49]  Gonzalo Fiz Pontiveros,et al.  The triangle-free process and R(3,k) , 2013 .

[50]  Bruce A. Reed,et al.  Asymptotically the List Colouring Constants Are 1 , 2002, J. Comb. Theory, Ser. B.

[51]  János Komlós,et al.  On Turán’s theorem for sparse graphs , 1981, Comb..

[52]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .