Quantum size effects on photoluminescence in ultrafine Si particles

Visible photoluminescence was observed in ultrafine Si particles at room temperature. Transmission electron microscopy revealed that Si microcrystallites were embedded in a Si oxide matrix for the sample which emitted the light. The emission energy depended on crystallite size in the range from 2.8 to 5 nm. The inverse relation between emission energy and the square of the crystallite size indicates that carrier confinement in the Si microcrystallites causes this photoluminescence phenomenon.