Iterative Methods for Finding a Trust-region Step

We consider methods for large-scale unconstrained minimization based on finding an approximate minimizer of a quadratic function subject to a two-norm trust-region inequality constraint. The Steihaug-Toint method uses the conjugate-gradient algorithm to minimize the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. The benefit of this approach is that an approximate solution may be obtained with minimal work and storage. However, the method does not allow the accuracy of a constrained solution to be specified. We propose an extension of the Steihaug-Toint method that allows a solution to be calculated to any prescribed accuracy. If the Steihaug-Toint point lies on the boundary, the constrained problem is solved on a sequence of evolving low-dimensional subspaces. Each subspace includes an accelerator direction obtained from a regularized Newton method applied to the constrained problem. A crucial property of this direction is that it can be computed by applying the conjugate-gradient method to a positive-definite system in both the primal and dual variables of the constrained problem. The method includes a parameter that allows the user to take advantage of the tradeoff between the overall number of function evaluations and matrix-vector products associated with the underlying trust-region method. At one extreme, a low-accuracy solution is obtained that is comparable to the Steihaug-Toint point. At the other extreme, a high-accuracy solution can be specified that minimizes the overall number of function evaluations at the expense of more matrix-vector products.

[1]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[2]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[3]  M. D. Hebden,et al.  An algorithm for minimization using exact second derivatives , 1973 .

[4]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[5]  M. Powell CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .

[6]  Philippe L. Toint,et al.  Towards an efficient sparsity exploiting newton method for minimization , 1981 .

[7]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[8]  Richard H. Byrd,et al.  A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. , 1985 .

[9]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[10]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[11]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[12]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[13]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[14]  John L. Nazareth The method of successive affine reduction for nonlinear minimization , 1986, Math. Program..

[15]  Richard H. Byrd,et al.  Approximate solution of the trust region problem by minimization over two-dimensional subspaces , 1988, Math. Program..

[16]  Nicholas I. M. Gould,et al.  Global Convergence of a Class of Trust Region Algorithms for Optimization Using Inexact Projections on Convex Constraints , 1993, SIAM J. Optim..

[17]  Dirk Siegel,et al.  Updating of conjugate direction matrices using members of Broyden's family , 1993, Math. Program..

[18]  Dirk Siegel,et al.  Modifying the BFGS update by a new column scaling technique , 1994, Math. Program..

[19]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[20]  Danny C. Sorensen,et al.  Minimization of a Large-Scale Quadratic FunctionSubject to a Spherical Constraint , 1997, SIAM J. Optim..

[21]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[22]  P. Gill,et al.  Combination trust-region line-search methods for unconstrained optimization , 1999 .

[23]  Nicholas I. M. Gould,et al.  Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..

[24]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[25]  Thomas F. Coleman,et al.  A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems , 1999, SIAM J. Sci. Comput..

[26]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[27]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[28]  Nicholas I. M. Gould,et al.  On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..

[29]  William W. Hager,et al.  Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..

[30]  Danny C. Sorensen,et al.  A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem , 2000, SIAM J. Optim..

[31]  Philip E. Gill,et al.  Reduced-Hessian Quasi-Newton Methods for Unconstrained Optimization , 2001, SIAM J. Optim..

[32]  Todd Munson,et al.  Benchmarking optimization software with COPS. , 2001 .

[33]  Danny C. Sorensen,et al.  A Trust-Region Approach to the Regularization of Large-Scale Discrete Forms of Ill-Posed Problems , 2001, SIAM J. Sci. Comput..

[34]  Philip E. Gill,et al.  Limited-Memory Reduced-Hessian Methods for Large-Scale Unconstrained Optimization , 2003, SIAM J. Optim..

[35]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[36]  E. Michael Gertz,et al.  A quasi-Newton trust-region method , 2004, Math. Program..

[37]  William W. Hager,et al.  Global convergence of SSM for minimizing a quadratic over a sphere , 2004, Math. Comput..

[38]  Jennifer B. Erway Iterative methods for large-scale unconstrained optimization , 2006 .

[39]  Le Thi Hoai An,et al.  Combining DCA (DC Algorithms) and interior point techniques for large-scale nonconvex quadratic programming , 2008, Optim. Methods Softw..

[40]  Danny C. Sorensen,et al.  Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization , 2008, TOMS.

[41]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[42]  G. Fasano Methods For Large-Scale Unconstrained Optimization , 2011 .