Mixing and fluid dynamics under location uncertainty

This thesis develops, analyzes and demonstrates several valuable applications of randomized fluid dynamics models referred to as under location uncertainty. The velocity is decomposed between large-scale components and random time-uncorrelated small-scale components. This assumption leads to a modification of the material derivative and hence of every fluid dynamics models. Through the thesis, the mixing induced by deterministic low-resolution flows is also investigated. We first applied that decomposition to reduced order models (ROM). The fluid velocity is expressed on a finite-dimensional basis and its evolution law is projected onto each of these modes. We derive two types of ROMs of Navier-Stokes equations. A deterministic LES-like model is able to stabilize ROMs and to better analyze the influence of the residual velocity on the resolved component. The random one additionally maintains the variability of stable modes and quantifies the model errors. We derive random versions of several geophysical models. We numerically study the transport under location uncertainty through a simplified one. A single realization of our model better retrieves the small-scale tracer structures than a deterministic simulation. Furthermore, a small ensemble of simulations accurately predicts and describes the extreme events, the bifurcations as well as the amplitude and the position of the ensemble errors. Another of our derived simplified model quantifies the frontolysis and the frontogenesis in the upper ocean. This thesis also studied the mixing of tracers generated by smooth fluid flows, after a finite time. We propose a simple model to describe the stretching as well as the spatial and spectral structures of advected tracers. With a toy flow but also with satellite images, we apply our model to locally and globally describe the mixing, specify the advection time and the filter width of the Lagrangian advection method, as well as the turbulent diffusivity in numerical simulations.

[1]  Andrew J. Majda,et al.  A statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems , 2013 .

[2]  C. Leith Atmospheric Predictability and Two-Dimensional Turbulence , 1971 .

[3]  L. Prieur,et al.  Advanced insights into sources of vertical velocity in the ocean , 2006 .

[4]  Andrew J. Majda,et al.  Stochastic superparameterization in quasigeostrophic turbulence , 2013, J. Comput. Phys..

[5]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[6]  Giulio Boccaletti,et al.  Mixed Layer Instabilities and Restratification , 2007 .

[7]  G. Shutts A kinetic energy backscatter algorithm for use in ensemble prediction systems , 2005 .

[8]  Rosemary Morrow,et al.  Mesoscale resolution capability of altimetry: Present and future , 2016 .

[9]  Sidney Leibovich,et al.  On wave-current interaction theories of Langmuir circulations , 1980, Journal of Fluid Mechanics.

[10]  P. Constantin,et al.  Front formation in an active scalar equation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  George Papanicolaou,et al.  Asymptotic theory of mixing stochastic ordinary differential equations , 2010 .

[12]  Bertrand Chapron,et al.  Direct measurements of ocean surface velocity from space: Interpretation and validation , 2005 .

[13]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[14]  Nikos Nikiforakis,et al.  ANALYSIS OF IMPLICIT LES METHODS , 2008 .

[15]  Filip Sadlo,et al.  A Comparison of Finite-Time and Finite-Size Lyapunov Exponents , 2014, Topological Methods in Data Analysis and Visualization.

[16]  Thomas G. Kurtz,et al.  A limit theorem for perturbed operator semigroups with applications to random evolutions , 1973 .

[17]  Igor Mezić,et al.  A New Mixing Diagnostic and Gulf Oil Spill Movement , 2010, Science.

[18]  Etienne Mémin,et al.  Fluid flow dynamics under location uncertainty , 2013, 1304.5333.

[19]  Jean-Luc Thiffeault Stretching and curvature of material lines in chaotic flows , 2004 .

[20]  Free Jacobi Process , 2006, math/0606218.

[21]  Eric Vanden-Eijnden,et al.  Reconstruction of diffusions using spectral data from timeseries , 2006 .

[22]  N. Krylov Stochastic flows and stochastic differential equations , 1994 .

[23]  S. Orszag Analytical theories of turbulence , 1970, Journal of Fluid Mechanics.

[24]  M. Lesieur,et al.  Statistical Predictability of Decaying Turbulence. , 1986 .

[25]  Schur-Weyl duality and the heat kernel measure on the unitary group , 2007, math/0703690.

[26]  Y. Michel,et al.  Estimating deformations of random processes for correlation modelling in a limited area model , 2013 .

[27]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[28]  É. Mémin,et al.  Reduced flow models from a stochastic Navier-Stokes representation , 2015 .

[29]  M. Hofmann Lp estimation of the diffusion coefficient , 1999 .

[30]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[31]  Vanden Eijnden E,et al.  Models for stochastic climate prediction. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Luigi Palatella,et al.  Nonlinear Processes in Geophysics On the Kalman Filter error covariance collapse into the unstable subspace , 2011 .

[33]  H. Zanten,et al.  Gaussian process methods for one-dimensional diffusions: optimal rates and adaptation , 2015, 1506.00515.

[34]  É. Mémin,et al.  A wavelet based numerical simulation of Navier-Stokes equations under uncertainty , 2014 .

[35]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[36]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[37]  Christian Olivera,et al.  Wellposedness for stochastic continuity equations with Ladyzhenskaya–Prodi–Serrin condition , 2013, 1307.6484.

[38]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[39]  R. Rotunno,et al.  The Next-Order Corrections to Quasigeostrophic Theory , 1999 .

[40]  E. Bollt,et al.  Stretching and folding in finite time. , 2016, Chaos.

[41]  Minseok Choi,et al.  On the equivalence of dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations , 2014, J. Comput. Phys..

[42]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[43]  Dominique Heitz,et al.  Combination of the Immersed Boundary Method with Compact Schemes for DNS of Flows in Complex Geometry , 2004 .

[44]  Guillermo Artana,et al.  Strong and weak constraint variational assimilations for reduced order fluid flow modeling , 2012, J. Comput. Phys..

[45]  A stochastic Lagrangian representation of the three‐dimensional incompressible Navier‐Stokes equations , 2005, math/0511067.

[46]  N. Papadakis,et al.  Data assimilation with the weighted ensemble Kalman filter , 2010 .

[47]  Paul D. Williams,et al.  Stochastic Parameterization: Towards a new view of Weather and Climate Models , 2015, 1510.08682.

[48]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[49]  R. Kraichnan,et al.  Anomalous scaling of a randomly advected passive scalar. , 1994, Physical review letters.

[50]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[51]  Patrice Klein,et al.  Dynamics of the Upper Oceanic Layers in Terms of Surface Quasigeostrophy Theory , 2006 .

[52]  B. Hoskins,et al.  Baroclinic Waves and Frontogenesis. Part II: Uniform Potential Vorticity Jet Flows-Cold and Warm Fronts , 1979 .

[53]  Georg A. Gottwald,et al.  Data Assimilation in Slow–Fast Systems Using Homogenized Climate Models , 2011, 1110.6671.

[54]  A. Ōkubo Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences , 1970 .

[55]  A. M. Stuart,et al.  A note on diffusion limits of chaotic skew-product flows , 2011, 1101.3087.

[56]  G. Badin Surface semi-geostrophic dynamics in the ocean , 2013 .

[57]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[58]  D. G. Andrews,et al.  Planetary Waves in Horizontal and Vertical Shear: The Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration , 1976 .

[59]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[60]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[61]  Olivier Pannekoucke,et al.  Estimation of the local diffusion tensor and normalization for heterogeneous correlation modelling using a diffusion equation , 2008 .

[62]  Patrice Klein,et al.  Upper Ocean Turbulence from High-Resolution 3D Simulations , 2008 .

[63]  Cecile Penland,et al.  A Stochastic Approach to Nonlinear Dynamics: A Review (extended version of the article - , 2003 .

[64]  Dominique Picard,et al.  Non-parametric estimation of the diffusion coefficient by wavelets methods , 1992 .

[65]  Annalisa Griffa,et al.  Oceanic Turbulence and Stochastic Models from Subsurface Lagrangian Data for the Northwest Atlantic Ocean , 2004 .

[66]  Cristóbal López,et al.  Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin , 2008, 0807.3848.

[67]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[68]  D. Stammer Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements , 1997 .

[69]  F. Bracco,et al.  Stochastic particle dispersion modeling and the tracer‐particle limit , 1992 .

[70]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[71]  G. Manney,et al.  Lagrangian reconstruction of ozone column and profile at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) throughout the winter and spring of 1997–1998 , 2001 .

[72]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[73]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[74]  Jean-Michel Brankart,et al.  Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling , 2013 .

[75]  Prakasa Rao Statistical inference for diffusion type processes , 1999 .

[76]  Hermann F. Fasel,et al.  Dynamics of three-dimensional coherent structures in a flat-plate boundary layer , 1994, Journal of Fluid Mechanics.

[77]  Franco Flandoli,et al.  STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND TURBULENCE , 1991 .

[78]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[79]  Themistoklis P Sapsis,et al.  Dynamically orthogonal field equations for stochastic flows and particle dynamics , 2011 .

[80]  G. Reverdin,et al.  Summertime modification of surface fronts in the North Atlantic subpolar gyre , 2011 .

[81]  C. E. Leith,et al.  Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer , 1990 .

[82]  T. Bengtsson,et al.  Performance Bounds for Particle Filters Using the Optimal Proposal , 2015 .

[83]  Isaac M. Held,et al.  Parameterization of Quasigeostrophic Eddies in Primitive Equation Ocean Models. , 1997 .

[84]  M. Jeroen Molemaker,et al.  Gulf Stream Dynamics along the Southeastern U.S. Seaboard , 2015 .

[85]  Georg A. Gottwald,et al.  The role of additive and multiplicative noise in filtering complex dynamical systems , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[86]  G. Lapeyre,et al.  Does the tracer gradient vector align with the strain eigenvectors in 2D turbulence , 1999 .

[87]  Jean Jacod,et al.  On the estimation of the diffusion coefficient for multi-dimensional diffusion processes , 1993 .

[88]  Jiahong Wu,et al.  New Numerical Results for the Surface Quasi-Geostrophic Equation , 2011, Journal of Scientific Computing.

[89]  A. Weaver,et al.  Representation of correlation functions in variational assimilation using an implicit diffusion operator , 2010 .

[90]  P. Berloff Random-forcing model of the mesoscale oceanic eddies , 2005, Journal of Fluid Mechanics.

[91]  Robert H. Kraichnan,et al.  Small‐Scale Structure of a Scalar Field Convected by Turbulence , 1968 .

[92]  Bernd R. Noack,et al.  Reduced-order modelling of the flow around a high-lift configuration with unsteady Coanda blowing , 2015, Journal of Fluid Mechanics.

[93]  Francesco Ragone,et al.  A study of surface semi-geostrophic turbulence: freely decaying dynamics , 2015, Journal of Fluid Mechanics.

[94]  N. Nakamura A New Look at Eddy Diffusivity as a Mixing Diagnostic , 2001 .

[95]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[96]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[97]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[98]  M. Vergassola,et al.  Particles and fields in fluid turbulence , 2001, cond-mat/0105199.

[99]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[100]  T. Özgökmen,et al.  Resolution dependent relative dispersion statistics in a hierarchy of ocean models , 2010 .

[101]  Philip L. Richardson,et al.  Eddy kinetic energy in the North Atlantic from surface drifters , 1983 .

[102]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[103]  Olivier Pannekoucke,et al.  Modelling of local length‐scale dynamics and isotropizing deformations , 2014 .

[104]  F. Takens Detecting strange attractors in turbulence , 1981 .

[105]  Francesco d'Ovidio,et al.  Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data , 2007 .

[106]  Govind Menon March Statistical theories of turbulence , 2016 .

[107]  Wojbor A. Woyczyński,et al.  Short-time correlation approximations for diffusing tracers in random velocity fields: a functional approach , 1996 .

[108]  G. Lapeyre,et al.  Lagrangian reconstructions of temperature and velocity in a model of surface ocean turbulence , 2014 .

[109]  Pierre F. J. Lermusiaux,et al.  Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows , 2013, J. Comput. Phys..

[110]  A. Vinogradov,et al.  Stochastic Equations through the Eye of the Physicist: Basic Concepts, Exact Results and Asymptotic Approximations , 2005 .

[111]  Guillermo Artana,et al.  Variational assimilation of POD low-order dynamical systems , 2007 .

[112]  Stephen B. Pope Self-conditioned fields for large-eddy simulations of turbulent flows , 2010, Journal of Fluid Mechanics.

[113]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[114]  H. Sørensen Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey , 2004 .

[115]  P. Moin,et al.  Subgrid-scale backscatter in turbulent and transitional flows , 1991 .

[116]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[117]  Raymond T. Pierrehumbert,et al.  Global Chaotic Mixing on Isentropic Surfaces , 1993 .

[118]  Andrew J. Majda,et al.  Blending Modified Gaussian Closure and Non-Gaussian Reduced Subspace Methods for Turbulent Dynamical Systems , 2013, J. Nonlinear Sci..

[119]  Tim Palmer,et al.  Uncertainty in weather and climate prediction , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[120]  E. M'emin,et al.  Stochastic representation of the Reynolds transport theorem: Revisiting large-scale modeling , 2016, 1611.03413.

[121]  C. Snyder,et al.  A New Surface Model for Cyclone–Anticyclone Asymmetry , 2002 .

[122]  Mohamed Moustaoui,et al.  Comparison between vertical ozone soundings and reconstructed potential vorticity maps by contour advection with surgery , 1997 .

[123]  Ulrich Schumann,et al.  Stochastic backscatter of turbulence energy and scalar variance by random subgrid-scale fluxes , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[124]  B. Hoskins Baroclinic waves and frontogenesis Part I: Introduction and Eady waves , 1976 .

[125]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[126]  Jean-Luc Thiffeault,et al.  Finite-time braiding exponents. , 2015, Chaos.

[127]  Andrew J. Majda,et al.  Low-Order Stochastic Mode Reduction for a Realistic Barotropic Model Climate , 2005 .

[128]  Bertrand Chapron,et al.  Stochastic modelling and diffusion modes for POD models and small-scale flow analysis , 2016 .

[129]  Marc Bocquet,et al.  Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation , 2015 .

[130]  Judith Berner,et al.  Stochastic climate theory and modeling , 2015 .

[131]  J. Chasnov Simulation of the Kolmogorov inertial subrange using an improved subgrid model , 1991 .

[132]  Cécile Penland,et al.  A Balance Condition for Stochastic Numerical Models with Application to the El Niño-Southern Oscillation , 1994 .

[133]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[134]  Andrew J. Majda,et al.  New Methods for Estimating Ocean Eddy Heat Transport Using Satellite Altimetry , 2012 .

[135]  Andrew J Majda,et al.  An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[136]  B. Delyon,et al.  On the Spectral Distribution of Gaussian Random Matrices , 2006 .

[137]  Chris Snyder,et al.  Model Uncertainty in a Mesoscale Ensemble Prediction System: Stochastic versus Multiphysics Representations , 2011 .

[138]  F. d’Ovidio,et al.  Mechanisms and spatial variability of meso scale frontogenesis in the northwestern subpolar gyre , 2011 .

[139]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[140]  Stephen B. Pope,et al.  A generalized Langevin model for turbulent flows , 1986 .

[141]  J. Frank,et al.  Stochastic homogenization for an energy conserving multi-scale toy model of the atmosphere , 2013 .

[142]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[143]  C. E. Leith,et al.  Predictability of Turbulent Flows , 1972 .

[144]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[145]  P. Imkeller,et al.  Stochastic climate models , 2001 .

[146]  T. J. Hanratty,et al.  Turbulent deposition and trapping of aerosols at a wall , 1992 .

[147]  B. Delyon Concentration inequalities for the spectral measure of random matrices , 2010 .

[148]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[149]  Andrew J Majda,et al.  Statistical energy conservation principle for inhomogeneous turbulent dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[150]  F. Menter Improved two-equation k-omega turbulence models for aerodynamic flows , 1992 .

[151]  Lee-Lueng Fu,et al.  Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping , 2015 .

[152]  M. Reeks The transport of discrete particles in inhomogeneous turbulence , 1983 .

[153]  B. Legras,et al.  Variability of the Lagrangian turbulent diffusion in the lower stratosphere , 2004 .

[154]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[155]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[156]  P. Welander,et al.  Studies on the General Development of Motion in a Two‐Dimensional, Ideal Fluid , 1955 .

[157]  Victor Lee,et al.  New Trends in Large-Eddy Simulations of Turbulence , 2011 .

[158]  Ivan Nourdin Calcul stochastique généralisé et applications au mouvement brownien fractionnaire : Estimation non paramétrique de la volatilité et test d'adéquation , 2004 .

[159]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[160]  Robert H. Kraichnan,et al.  Eddy Viscosity and Diffusivity: Exact Formulas and Approximations , 1987, Complex Syst..

[161]  Patrice Klein,et al.  Oceanic Restratification Forced by Surface Frontogenesis , 2006 .

[162]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[163]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[164]  Cecile Penland,et al.  NOISE OUT OF CHAOS AND WHY IT WON'T GO AWAY , 2003 .

[165]  Boris Rozovskii,et al.  Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..

[166]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[167]  Eric Vanden-Eijnden,et al.  Stochastic mode-reduction in models with conservative fast sub-systems , 2014 .

[168]  K. Swanson,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[169]  T. Sapsis,et al.  Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty , 2012 .

[170]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[171]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[172]  K. Wyrtki,et al.  Eddy energy in the oceans , 1976 .

[173]  Themistoklis P. Sapsis,et al.  Attractor local dimensionality, nonlinear energy transfers and finite-time instabilities in unstable dynamical systems with applications to two-dimensional fluid flows , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[174]  Spectral Distribution of the Free Unitary Brownian Motion: Another Approach , 2011, 1103.4693.

[175]  R. Morrow,et al.  Lateral stirring of large-scale tracer fields by altimetry , 2013, Ocean Dynamics.

[176]  Time regularity of the densities for the Navier–Stokes equations with noise , 2014, 1409.1700.

[177]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[178]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[179]  G. Sehmel,et al.  Particle deposition from turbulent air flow , 1970 .

[180]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[181]  PierGianLuca Porta Mana,et al.  Toward a stochastic parameterization of ocean mesoscale eddies , 2014 .

[182]  Andrew J Majda,et al.  Efficient stochastic superparameterization for geophysical turbulence , 2013, Proceedings of the National Academy of Sciences.

[183]  Mark Reed,et al.  Preliminary assessment of an oil-spill trajectory model using satellite-tracked, oil-spill-simulating drifters , 2006, Environ. Model. Softw..

[184]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[185]  Peter R. Kramer,et al.  Diagnosing Lateral Mixing in the Upper Ocean with Virtual Tracers: Spatial and Temporal Resolution Dependence , 2011 .

[186]  A. O'Neill,et al.  High-Resolution Stratospheric Tracer Fields Estimated from Satellite Observations Using Lagrangian Trajectory Calculations , 1994 .

[187]  Georg A. Gottwald,et al.  Homogenization for deterministic maps and multiplicative noise , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[188]  Anna Trevisan,et al.  Assimilation of Standard and Targeted Observations within the Unstable Subspace of the Observation–Analysis–Forecast Cycle System , 2004 .

[189]  Sylvain Laizet,et al.  High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy , 2009, J. Comput. Phys..

[190]  Georg A. Gottwald,et al.  Stochastic Climate Theory , 2016, 1612.07474.

[191]  Guillaume Cébron Processes on the unitary group and free probability , 2014 .

[192]  Y. Michel,et al.  Estimating deformations of random processes for correlation modelling: methodology and the one‐dimensional case , 2013 .

[193]  Virginia Kalb,et al.  An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models , 2007 .

[194]  C. Garrett,et al.  Dynamical aspects of shallow sea fronts , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[195]  Charles-Henri Bruneau,et al.  Accurate model reduction of transient and forced wakes , 2007 .

[196]  E. Lorenz,et al.  The predictability of a flow which possesses many scales of motion , 1969 .

[197]  James C. McWilliams,et al.  Material Transport in Oceanic Gyres. Part II: Hierarchy of Stochastic Models , 2002 .

[198]  D. Thomson,et al.  Stochastic backscatter in large-eddy simulations of boundary layers , 1992, Journal of Fluid Mechanics.

[199]  Prashant D. Sardeshmukh,et al.  The Optimal Growth of Tropical Sea Surface Temperature Anomalies , 1995 .

[200]  Valerio Lucarini,et al.  Mathematical and physical ideas for climate science , 2013, 1311.1190.

[201]  Darryl D. Holm Variational principles for stochastic fluid dynamics , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[202]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[203]  Yves Rozenholc,et al.  Penalized nonparametric mean square estimation of the coefficients of diffusion processes , 2007, 0708.4165.

[204]  E. Lamballais,et al.  Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900 , 2008 .

[205]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[206]  Lebedev,et al.  Nonuniversality of the scaling exponents of a passive scalar convected by a random flow. , 1996, Physical review letters.

[207]  Carolina Mendoza,et al.  Hidden geometry of ocean flows. , 2010, Physical review letters.

[208]  Franco Flandoli The Interaction Between Noise and Transport Mechanisms in PDEs , 2011 .

[209]  M. Lesieur,et al.  Spectral large-eddy simulation of isotropic and stably stratified turbulence , 1992, Journal of Fluid Mechanics.

[210]  George Haller,et al.  Lagrangian coherent structures and the smallest finite-time Lyapunov exponent. , 2011, Chaos.

[211]  Martin Leutbecher,et al.  A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System , 2009 .

[212]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[213]  Brian J. Hoskins,et al.  The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations. , 1975 .

[214]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[215]  James C. McWilliams,et al.  Surface kinetic energy transfer in surface quasi-geostrophic flows , 2008, Journal of Fluid Mechanics.

[216]  Dara Entekhabi,et al.  The role of model dynamics in ensemble Kalman filter performance for chaotic systems , 2011 .

[217]  T. Palmer,et al.  Introduction. Stochastic physics and climate modelling , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[218]  Satellite-sensed turbulent ocean structure , 1981, Nature.

[219]  K. Lilly On the application of the eddy viscosity concept in the Inertial sub-range of turbulence , 1966 .

[220]  D. Florens-zmirou On estimating the diffusion coefficient from discrete observations , 1993, Journal of Applied Probability.

[221]  Andrew J. Majda,et al.  Systematic Strategies for Stochastic Mode Reduction in Climate , 2003 .

[222]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[223]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[224]  Karthik S. Gurumoorthy,et al.  Degenerate Kalman Filter Error Covariances and Their Convergence onto the Unstable Subspace , 2016, SIAM/ASA J. Uncertain. Quantification.

[225]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[226]  Gawedzki,et al.  Anomalous scaling of the passive scalar. , 1995, Physical review letters.

[227]  P. Constantin,et al.  A stochastic-Lagrangian approach to the Navier-Stokes equations in domains with boundary. , 2010, 1003.2461.

[228]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[229]  James V. Candy,et al.  Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods , 2009 .

[230]  Gareth O. Roberts,et al.  Systematic physics constrained parameter estimation of stochastic differential equations , 2013, Comput. Stat. Data Anal..

[231]  S. Belan,et al.  Phase transitions in the distribution of inelastically colliding inertial particles , 2015, 1503.04190.

[232]  Peter E. Kloeden,et al.  Lyapunov exponents and rotation number of two-dimensional systems with telegraphic noise , 1989 .

[233]  Andrew J. Majda,et al.  Low-Order Stochastic Mode Reduction for a Prototype Atmospheric GCM , 2006 .

[234]  Jean-Luc Thiffeault,et al.  Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions. , 2000, Chaos.

[235]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[236]  B. R. Noack,et al.  Optimal nonlinear eddy viscosity in Galerkin models of turbulent flows , 2014, Journal of Fluid Mechanics.

[237]  K. Denman,et al.  Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure , 1980, Nature.

[238]  Geoffrey K. Vallis,et al.  Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[239]  W. Blumen,et al.  Uniform Potential Vorticity Flow: Part I. Theory of Wave Interactions and Two-Dimensional Turbulence , 1978 .

[240]  Sylvain Laizet,et al.  Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation , 2011, J. Comput. Phys..

[241]  É. Mémin,et al.  Geophysical flows under location uncertainty, Part I Random transport and general models , 2016, 1611.02572.

[242]  Topologie du mélange dans un fluide turbulent géophysique , 2000 .

[243]  Andrew J Majda,et al.  Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems , 2013, Proceedings of the National Academy of Sciences.

[244]  Richard Pasquetti,et al.  Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows , 2006, J. Sci. Comput..