From Förster resonance energy transfer to coherent resonance energy transfer and back

Photosynthesis converts solar energy into chemical energy. It provides food and oxygen; and, in the future, it could directly provide bioenergy or renewable energy sources, such as bio-alcohol or hydrogen. To exploit such a highly efficient capture of energy requires an understanding of the fundamental physics. The process is initiated by photon absorption, followed by highly efficient and extremely rapid transfer and trapping of the excitation energy. We first review early fluorescence experiments on in vivo energy transfer, which were undertaken to understand the mechanism of such efficient energy capture. A historical synopsis is given of experiments and interpretations by others that dealt with the question of how energy is transferred from the original location of photon absorption in the photosynthetic antenna system into the reaction centers, where it is converted into useful chemical energy. We conclude by examining the physical basis of some current models concerning the roles of coherent excitons and incoherent hopping in the exceptionally efficient transfer of energy into the reaction center.

[1]  Yoshihiko Fujita,et al.  EXCITATION ENERGY TRANSFER IN THE LIGHT HARVESTING ANTENNA SYSTEM OF THE RED ALGA Porphyridium cruentum AND THE BLUE‐GREEN ALGA Anacystis nidulans: ANALYSIS OF TIME‐RESOLVED FLUORESCENCE SPECTRA , 1984 .

[2]  Graham R. Fleming,et al.  Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations , 2002 .

[3]  M. Kasha,et al.  ENERGY TRANSFER MECHANISMS AND THE MOLECULAR EXCITON MODEL FOR MOLECULAR AGGREGATES. , 1963, Radiation research.

[4]  R. Clegg Fluorescence resonance energy transfer. , 2020, Current Opinion in Biotechnology.

[5]  Govindjee Carotenoids in Photosynthesis: An Historical Perspective , 1999 .

[6]  H. Kohn Number of Chlorophyll Molecules acting as an Absorbing Unit in Photosynthesis , 1936, Nature.

[7]  H. J. Dutton Carotenoid-sensitized photosynthesis: Quantum efficiency, fluorescence and energy transfer , 1997, Photosynthesis Research.

[8]  J. Dekker,et al.  Modeling Light Harvesting and Primary Charge Separation in Photosystem I and Photosystem II , 2009 .

[9]  Govindjee,et al.  Light Emission by Plants and Bacteria , 1986 .

[10]  K. Schulten,et al.  General random matrix approach to account for the effect of static disorder on the spectral properties of light harvesting systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  G. Fleming,et al.  On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. , 2009, The Journal of chemical physics.

[12]  T. Kakitani,et al.  Advanced theory of excitation energy transfer in dimers. , 2007, The journal of physical chemistry. A.

[13]  F. Daldal,et al.  The purple phototrophic bacteria , 2009 .

[14]  W. Petrie THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS , 1932, The Journal of general physiology.

[15]  B. Kê Photosynthesis: Photobiochemistry and Photobiophysics , 2001 .

[16]  C. Bauer,et al.  Molecular evidence for the early evolution of photosynthesis. , 2000, Science.

[17]  R. Knox,et al.  Energy migration and exciton trapping in green plant photosynthesis , 2004, Photosynthesis Research.

[18]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[19]  Robert M. Clegg Nuts and Bolts of Excitation Energy Migration and Energy Transfer , 2004 .

[20]  G. Fleming,et al.  Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature , 2009, Proceedings of the National Academy of Sciences.

[21]  Hohjai Lee,et al.  Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence , 2007, Science.

[22]  F. Perrin,et al.  Théorie quantique des transferts d’activation entre molécules de même espèce. Cas des solutions fluorescentes , 1932 .

[23]  Klaus Schulten,et al.  Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle , 2007, Proceedings of the National Academy of Sciences.

[24]  E. Rabinowitch,et al.  Excitation energy transfer between pigments in photosynthetic cells. , 1962, Biophysical journal.

[25]  R. Pearlstein Photosynthetic exciton theory in the 1960s , 2004, Photosynthesis Research.

[26]  Anthony W. D. Larkum,et al.  Chlorophyll a Fluorescence A Signature of Photosynthesis. , 2006 .

[27]  T. Renger Theory of excitation energy transfer: from structure to function , 2009, Photosynthesis Research.

[28]  Robert Emerson,et al.  THE DEPENDENCE OF THE QUANTUM YIELD OF CHLORELLA PHOTOSYNTHESIS ON WAVE LENGTH OF LIGHT , 1943 .

[29]  H. Gaffron,et al.  Zur Theorie der Assimilation , 1936, Naturwissenschaften.

[30]  Z. Bay,et al.  A THEORY OF ENERGY TRANSFER IN THE PHOTOSYNTHETIC UNIT. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Govindjee,et al.  Picosecond spectroscopy of the isolated reaction centers from the photosystems of oxygenic photosynthesis—ten years (1987–1997) of fun , 2009, Photosynthesis Research.

[32]  A. Glazer,et al.  Light harvesting by phycobilisomes. , 1985, Annual review of biophysics and biophysical chemistry.

[33]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[34]  Govindjee,et al.  Chlorophyll B fluorescence and an emission band at 700 nm at room temperature in green algae , 1972, FEBS letters.

[35]  A. Rubin,et al.  Modeling of the Primary Processes in a Photosynthetic Membrane , 2009 .

[36]  J. Leegwater,et al.  Coherent Versus Incoherent Energy Transfer and Trapping in Photosynthetic Antenna Complexes , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[37]  Govindjee,et al.  Chlorophyll a Fluorescence: A Bit of Basics and History , 2004 .

[38]  J. Barber,et al.  Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. , 1978, Biochimica et biophysica acta.

[39]  L. Duysens Transfer of excitation energy in photosynthesis , 1952 .

[40]  R. Clegg The History of Fret , 2006 .

[41]  Graham R Fleming,et al.  Dynamics of light harvesting in photosynthesis. , 2009, Annual review of physical chemistry.

[42]  R. Pearlstein Coupling of exciton motion in the core antenna and primary charge separation in the reaction center , 1996, Photosynthesis Research.

[43]  Govindjee,et al.  Emission spectra of Chlorella at very low temperatures (−269° to −196°) , 1966 .

[44]  D. L. Dexter,et al.  Theory of Concentration Quenching in Inorganic Phosphors , 1954 .

[45]  Govindjee,et al.  Structure of the Red Fluorescence Band in Chloroplasts , 1966, The Journal of general physiology.

[46]  W. M. Manning,et al.  Chlorophyll Fluorescence and Energy Transfer in the Diatom Nitzschia Closterium. , 1943 .

[47]  Govindjee,et al.  Antagonistic effect of mono‐ and divalent‐cations on lifetime (τ) and quantum yield of fluorescence (ψ) in isolated chloroplasts , 1977 .

[48]  J. Amesz,et al.  Action Spectra and Energy Transfer in Photosynthesis , 1969 .

[49]  R. Kubo,et al.  Two-Time Correlation Functions of a System Coupled to a Heat Bath with a Gaussian-Markoffian Interaction , 1989 .

[50]  S. Mukamel,et al.  Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes , 1998 .

[51]  Graham D. Farquhar,et al.  Biochemical Model of C3 Photosynthesis , 2009 .

[52]  S. Itoh,et al.  Fluorescence measurement by a streak camera in a single-photon-counting mode , 2009, Photosynthesis Research.

[53]  E C WASSINK,et al.  Chlorophyll fluorescence and photosynthesis. , 1951, Advances in enzymology and related subjects of biochemistry.

[54]  S. Brody,et al.  New Excited State of Chlorophyll. , 1958, Science.

[55]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[56]  F. Perrin Interaction entre atomes normal et activé. Transferts d'activation. Formation d'une molécule activée , 1933 .

[57]  L. Duysens Transfer of Light Energy Within the Pigment Systems Present in Photosynthesizing Cells , 1951, Nature.

[58]  R. Clayton The biophysical problems of photosynthesis. , 1965, Science.

[59]  David Beljonne,et al.  Beyond Förster resonance energy transfer in biological and nanoscale systems. , 2009, The journal of physical chemistry. B.

[60]  C. S. French,et al.  THE FLUORESCENCE SPECTRA OF RED ALGAE AND THE TRANSFER OF ENERGY FROM PHYCOERYTHRIN TO PHYCOCYANIN AND CHLOROPHYLL , 1952, The Journal of general physiology.

[61]  J. Franck,et al.  Über Zerlegung von Wasserstoffmolekülen durch angeregte Quecksilberatome , 1922 .

[62]  T. Forster Energiewanderung und Fluoreszenz , 2004, Naturwissenschaften.

[63]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[64]  S. Mukamel,et al.  Multiple Exciton Coherence Sizes in Photosynthetic Antenna Complexes viewed by Pump−Probe Spectroscopy , 1997 .

[65]  R. Pearlstein Antenna exciton trapping kinetics as a probe of primary electron transfer heterogeneity in the photosynthetic reaction center , 1996 .

[66]  A. Holzwarth Primary Reactions — From Isolated Complexes to Intact Plants , 2008 .

[67]  Milestones in photosynthesis research , 2000 .

[68]  Govindjee,et al.  Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[69]  Govindjee,et al.  FLUORESCENCE CHANGES IN PORPHYRIDIUM EXPOSED TO GREEN LIGHT OF DIFFERENT INTENSITY: A NEW EMISSION BAND AT 693 mmu AND ITS SIGNIFICANCE TO PHOTOSYNTHESIS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[70]  D. Wong Antagonistic effects of mono‐ and divalent cations on polarization of chlorophyll fluorescence in thylakoids and changes in excitation energy transfer , 1979 .

[71]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[72]  Govindjee,et al.  Fluorescence studies on a red alga, Porphyridium cruentum. , 1966, Biochimica et biophysica acta.

[73]  D. Wong,et al.  ACTION SPECTRA OF CATION EFFECTS ON THE FLUORESCENCE POLARIZATION AND INTENSITY IN THYLAKOIDS AT ROOM TEMPERATURE , 1981 .

[74]  C. Whittingham,et al.  Photosynthesis , 1941, Nature.

[75]  F. Cho LOW-TEMPERATURE ( 4-77 ° K ) SPECTROSCOPY OF ANACYSTIS ; TEMPERATURE DEPENDENCE OF ENERGY TRANSFER EFFICIENCY , 2007 .

[76]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[77]  Nathan Nelson,et al.  Crystal structure of plant photosystem I , 2003, Nature.

[78]  P. Dirac The Quantum Theory of the Emission and Absorption of Radiation , 1927 .

[79]  N. Isaacs,et al.  The purple bacterial photosynthetic unit , 1996, Photosynthesis Research.

[80]  Seymour Steven Brody,et al.  Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950–1960* , 2004, Photosynthesis Research.

[81]  Govindjee,et al.  Low-temperature (4–77°K) spectroscopy of chlorella; temperature dependence of energy transfer efficiency , 1970 .

[82]  M. Mimuro Photon Capture, Exciton Migration and Trapping and Fluorescence Emission in Cyanobacteria and Red Algae , 2004 .

[83]  M. G. Müller,et al.  Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study. , 2006, Biochemistry.

[84]  K. Schulten,et al.  The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. , 1996, Structure.

[85]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[86]  J. Barber,et al.  Photosystem II. , 1999, Current opinion in structural biology.

[87]  M. Mimuro Visualization of excitation energy transfer processes in plants and algae , 2004, Photosynthesis Research.

[88]  R. Pearlstein EXCITON MIGRATION AND TRAPPING IN PHOTOSYNTHESIS , 1982 .

[89]  P. Joliot,et al.  Excitation transfer between photosynthetic units: the 1964 experiment , 2004, Photosynthesis Research.

[90]  G. Schmid,et al.  Photosynthetic Units , 1968, The Journal of general physiology.

[91]  G. Renger,et al.  COHERENT MOTION AND TRANSFER OF EXCITATION ENERGY IN THE PRIMARY PROCESSES OF PHOTOSYNTHESIS , 1993 .

[92]  R. Knox Electronic excitation transfer in the photosynthetic unit: Reflections on work of William Arnold , 1996, Photosynthesis Research.

[93]  K. Schulten,et al.  Light harvesting complex II B850 excitation dynamics. , 2009, The Journal of chemical physics.

[94]  W. Arnold,et al.  The polarization of fluorescence and energy transfer in grana. , 1956, Archives of Biochemistry and Biophysics.

[95]  Govindjee,et al.  Decrease in the Degree of Polarization of Chlorophyll Fluorescence upon the Addition of DCMU to Algae , 1972 .

[96]  Thomas Renger,et al.  Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? , 2008, Journal of the American Chemical Society.

[97]  S. Brody,et al.  Excitation lifetime of photosynthetic pigments in vitro and in vivo. , 1957, Science.

[98]  M. Mohseni,et al.  Role of Quantum Coherence in Chromophoric Energy Transport , 2008, 0806.4725.

[99]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[100]  Govindjee,et al.  Some properties of spinach chloroplast fractions obtained by digitonin solubilization. , 1966, Biochimica et biophysica acta.

[101]  R. Emerson,et al.  A SEPARATION OF THE REACTIONS IN PHOTOSYNTHESIS BY MEANS OF INTERMITTENT LIGHT , 1932, The Journal of general physiology.

[102]  I. Rabi Space Quantization in a Gyrating Magnetic Field , 1937 .

[103]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[104]  E. Schrödinger Energieaustausch nach der Wellenmechanik , 1927 .

[105]  Th. Förster Fluoreszenz organischer Verbindungen , 1951 .

[106]  H. Kohn,et al.  THE CHLOROPHYLL UNIT IN PHOTOSYNTHESIS , 1934, The Journal of general physiology.

[107]  A. van Hoek,et al.  Excitation energy transfer and charge separation in photosystem II membranes revisited. , 2006, Biophysical journal.

[108]  K. Schulten,et al.  Robustness and Optimality of Light Harvesting in Cyanobacterial Photosystem I , 2002, physics/0207070.

[109]  Robert Emerson,et al.  THE PHOTOSYNTHETIC EFFICIENCY OF PHYCOCYANIN IN CHROOCOCCUS, AND THE PROBLEM OF CAROTENOID PARTICIPATION IN PHOTOSYNTHESIS , 1942, The Journal of general physiology.

[110]  S. Scheuring,et al.  Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. , 2005, Biochimica et biophysica acta.

[111]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  V. M. Kenkre,et al.  Theory of Fast and Slow Excitation Transfer Rates , 1974 .

[113]  G. Jee,et al.  Fluorescence spectra of chlorella in the 295–77°K range☆ , 1970 .

[114]  J. C. Goedheer FLUORESCENCE IN RELATION TO PHOTOSYNTHESIS , 1972 .

[115]  J. Oppenheimer,et al.  INTERNAL CONVERSION IN THE PHOTOSYNTHETIC MECHANISM OF BLUE-GREEN ALGAE , 1950, The Journal of general physiology.

[116]  T. Kakitani,et al.  Theory of Excitation Energy Transfer in the Intermediate Coupling Case of Clusters , 2003 .

[117]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[118]  R. Knox Excitons and their equilibration , 1997 .

[119]  G. Schansker,et al.  Models of Chlorophyll a Fluorescence Transients , 2009 .